Enhancing the decoding accuracy of EEG signals by the introduction of anchored-STFT and adversarial data augmentation method.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 03 2022
10 03 2022
Historique:
received:
16
08
2021
accepted:
22
02
2022
entrez:
11
3
2022
pubmed:
12
3
2022
medline:
27
4
2022
Statut:
epublish
Résumé
Brain-computer interfaces (BCIs) enable communication between humans and machines by translating brain activity into control commands. Electroencephalography (EEG) signals are one of the most used brain signals in non-invasive BCI applications but are often contaminated with noise. Therefore, it is possible that meaningful patterns for classifying EEG signals are deeply hidden. State-of-the-art deep-learning algorithms are successful in learning hidden, meaningful patterns. However, the quality and the quantity of the presented inputs are pivotal. Here, we propose a feature extraction method called anchored Short Time Fourier Transform (anchored-STFT), which is an advanced version of STFT, as it minimizes the trade-off between temporal and spectral resolution presented by STFT. In addition, we propose a data augmentation method derived from l2-norm fast gradient sign method (FGSM), called gradient norm adversarial augmentation (GNAA). GNAA is not only an augmentation method but is also used to harness adversarial inputs in EEG data, which not only improves the classification accuracy but also enhances the robustness of the classifier. In addition, we also propose a CNN architecture, namely Skip-Net, for the classification of EEG signals. The proposed pipeline outperforms the current state-of-the-art methods and yields classification accuracies of 90.7% on BCI competition II dataset III and 89.5%, 81.8%, 76.0% and 85.4%, 69.1%, 80.9% on different data distributions of BCI Competition IV dataset 2b and 2a, respectively.
Identifiants
pubmed: 35273310
doi: 10.1038/s41598-022-07992-w
pii: 10.1038/s41598-022-07992-w
pmc: PMC8913630
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4245Informations de copyright
© 2022. The Author(s).
Références
Sensors (Basel). 2012;12(2):1211-79
pubmed: 22438708
IEEE Trans Biomed Eng. 2020 Jan;67(1):69-78
pubmed: 30932828
J Neural Eng. 2011 Apr;8(2):025014
pubmed: 21436530
J Neural Eng. 2017 Feb;14(1):016003
pubmed: 27900952
IEEE Trans Biomed Eng. 2004 Jun;51(6):1077-80
pubmed: 15188882
Ann N Y Acad Sci. 2009 Mar;1157:90-100
pubmed: 19351359
J Neural Eng. 2019 Jul 23;16(5):056003
pubmed: 31042684
IEEE Trans Neural Syst Rehabil Eng. 2018 Mar;26(3):551-562
pubmed: 29522399
J Neural Eng. 2021 Mar 25;18(4):
pubmed: 33691299
Clin Neurophysiol. 1999 Nov;110(11):1842-57
pubmed: 10576479
J Neural Eng. 2010 Oct;7(5):056007
pubmed: 20811093
J Neural Eng. 2021 Feb 05;18(1):
pubmed: 33166944
Front Neurosci. 2012 Mar 29;6:39
pubmed: 22479236
J Neural Eng. 2020 Jan 06;17(1):016025
pubmed: 31476743
IEEE Trans Biomed Eng. 2008 Aug;55(8):1991-2000
pubmed: 18632362
J Neural Eng. 2005 Dec;2(4):L14-22
pubmed: 16317224
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149
pubmed: 27295650
Lancet. 2017 May 6;389(10081):1821-1830
pubmed: 28363483
Science. 2015 May 22;348(6237):906-10
pubmed: 25999506
J Neural Eng. 2018 Oct;15(5):056013
pubmed: 29932424
Exp Neurobiol. 2018 Dec;27(6):453-471
pubmed: 30636899
J Neurosci. 2015 Nov 18;35(46):15466-76
pubmed: 26586832
Front Neurosci. 2012 Jul 13;6:55
pubmed: 22811657
Hum Brain Mapp. 2017 Nov;38(11):5391-5420
pubmed: 28782865
J Neural Eng. 2011 Jun;8(3):036015
pubmed: 21525569
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2620-3
pubmed: 26736829
J Neurophysiol. 2020 Apr 1;123(4):1472-1485
pubmed: 32101491
IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6
pubmed: 11204034
Clin Neurophysiol. 1999 May;110(5):787-98
pubmed: 10400191
J Neural Eng. 2006 Sep;3(3):235-44
pubmed: 16921207