Protease-activated receptor 2 enhances innate and inflammatory mechanisms induced by lipopolysaccharide in macrophages from C57BL/6 mice.


Journal

Inflammation research : official journal of the European Histamine Research Society ... [et al.]
ISSN: 1420-908X
Titre abrégé: Inflamm Res
Pays: Switzerland
ID NLM: 9508160

Informations de publication

Date de publication:
Apr 2022
Historique:
received: 25 05 2021
accepted: 16 02 2022
revised: 11 02 2022
pubmed: 12 3 2022
medline: 12 4 2022
entrez: 11 3 2022
Statut: ppublish

Résumé

This study was conducted to investigate the effects of the synthetic PAR2 agonist peptide (PAR2-AP) SLIGRL-NH Peritoneal macrophages obtained from C57BL/6 mice were incubated with PAR2-AP and/or LPS, and the phagocytosis of zymosan fluorescein isothiocyanate (FITC) particles; nitric oxide (NO), reactive oxygen species (ROS), and cytokine production; and inducible NO synthase (iNOS) expression in macrophages co-cultured with PAR-2-AP/LPS were evaluated. Co-incubation of macrophages with PAR2AP (30 µM)/LPS (100 ng/mL) enhanced LPS-induced phagocytosis; production of NO, ROS, and the pro-inflammatory cytokines interleukin (IL)-1β, tumour necrosis factor (TNF)-α, IL-6, and C-C motif chemokine ligand (CCL)2; and iNOS expression and impaired the release of the anti-inflammatory cytokine IL-10 after 4 h of co-stimulation. In addition, PAR2AP increased the LPS-induced translocation of the p65 subunit of the pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and reduced the expression of inhibitor of NF-κB. This study provides evidence of a role for PAR2 in macrophage response triggered by LPS enhancing the phagocytic activity and NO, ROS, and cytokine production, resulting in the initial and adequate macrophage response required for their innate response mechanisms.

Identifiants

pubmed: 35274151
doi: 10.1007/s00011-022-01551-9
pii: 10.1007/s00011-022-01551-9
doi:

Substances chimiques

Cytokines 0
F2rl1 protein, mouse 0
Lipopolysaccharides 0
NF-kappa B 0
Reactive Oxygen Species 0
Receptor, PAR-2 0
Tumor Necrosis Factor-alpha 0
Nitric Oxide 31C4KY9ESH
Nitric Oxide Synthase Type II EC 1.14.13.39

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

439-448

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de Minas Gerais
ID : PPM-00593-16

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68. https://doi.org/10.1016/0092-8674(91)90261-V .
doi: 10.1016/0092-8674(91)90261-V pubmed: 1672265
Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407:258–64. https://doi.org/10.1038/35025229 .
doi: 10.1038/35025229 pubmed: 11001069
Hollenberg MD, Compton SJ. International union of pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol Rev. 2002;54:203–17. https://doi.org/10.1124/pr.54.2.203 .
doi: 10.1124/pr.54.2.203 pubmed: 12037136
Ramachandran R, Hollenberg MD. Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol. 2008;153(Suppl 1):S263–82. https://doi.org/10.1038/sj.bjp.0707507 .
doi: 10.1038/sj.bjp.0707507 pubmed: 18059329
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev. 2005;26(1):1–43. https://doi.org/10.1210/er.2003-0025 .
doi: 10.1210/er.2003-0025 pubmed: 15689571
Shpacovitch VM, Feld M, Holzinger D, Kido M, Hollenberg MD, Levi-Schafer F, Nathalie Vergnolle N, Ludwig S, Roth J, Luger T, Steinhoff M. Role of proteinase-activated receptor-2 in anti-bacterial and immunomodulatory effects of interferon-γ on human neutrophils and monocytes. Immunology. 2011;133:329–39. https://doi.org/10.1111/j.1365-2567.2011.03443.x .
doi: 10.1111/j.1365-2567.2011.03443.x pubmed: 21501162 pmcid: 3112342
Feld M, Shpacovitch V, Ehrhardt C, Fastrich M, Goerge T, Ludwig S, Steinhoff M. Proteinase-activated receptor-2 agonist activates anti-influenza mechanisms and modulates IFNγ-induced antiviral pathways in human neutrophils. BioMed Res Int. 2013;2013:1–10. https://doi.org/10.1155/2013/879080 .
doi: 10.1155/2013/879080
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther. 2011;130:248–82. https://doi.org/10.1016/j.pharmthera.2011.01.003 .
doi: 10.1016/j.pharmthera.2011.01.003 pubmed: 21277892
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. https://doi.org/10.1038/nri2448 .
doi: 10.1038/nri2448 pubmed: 19029990 pmcid: 2724991
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37. https://doi.org/10.1038/nri3073 .
doi: 10.1038/nri3073 pubmed: 21997792 pmcid: 3422549
Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol. 2008;181:3733–9. https://doi.org/10.4049/jimmunol .
doi: 10.4049/jimmunol pubmed: 18768823
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604. https://doi.org/10.1016/j.immuni.2010.05.007 .
doi: 10.1016/j.immuni.2010.05.007 pubmed: 20510870
Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018;18(4):e27. https://doi.org/10.4110/in.2018.18.e27 .
doi: 10.4110/in.2018.18.e27 pubmed: 30181915 pmcid: 6117512
Rallabhandi P, Nhu QM, Toshchakov VY, Piao W, Medvedev AE, Hollenberg MD, Fasano A, Vogel SN. Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. J Biol Chem. 2008;283:24314–25. https://doi.org/10.1074/jbc.M804800200 .
doi: 10.1074/jbc.M804800200 pubmed: 18622013 pmcid: 2528983
Steven R, Crilly A, Lockhart JC, Ferrell WR, McInnes IB. Proteinase-activated receptor-2 modulates human macrophage differentiation and effector function. Innate Immun. 2013;19:663–72. https://doi.org/10.1177/1753425913479984 .
doi: 10.1177/1753425913479984 pubmed: 23606513
Moretti S, Bellocchio S, Bonifazi P, Bozza S, Zelante T, Bistoni F, Romani L. The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol. 2008;1(2):156–68. https://doi.org/10.1038/mi.2007.13 (Epub 2008 Jan 9).
doi: 10.1038/mi.2007.13 pubmed: 19079173
Chao HH, Chen PY, Hao WR, Chiang WP, Cheng TH, Loh SH, Leung YM, Liu JC, Chen JJ, Sung LC. Lipopolysaccharide pretreatment increases protease-activated receptor-2 expression and monocyte chemoattractant protein-1 secretion in vascular endothelial cells. J Biomed Sci. 2017;24:85. https://doi.org/10.1186/s12929-017-0393-1 .
doi: 10.1186/s12929-017-0393-1 pubmed: 29141644 pmcid: 5688698
Almeida AD, Silva IS, Fernandes-Braga W, Lima-Filho ACM, Florentino RM, Barra A, Andrade LO, Leite MF, Cassali GD, Klein A. A role for mast cells and mast cell tryptase in driving neutrophil recruitment in LPS-induced lung inflammation via protease-activated receptor 2 in mice. Inflamm Res. 2020;69(10):1059–70. https://doi.org/10.1007/s00011-020-01376-4 .
doi: 10.1007/s00011-020-01376-4 pubmed: 32632517
Klein A, Talvani A, Silva PM, Martins MA, Wells TN, Proudfoot A, et al. Stem cell factor-induced leukotriene B4 production cooperates with eotaxin to mediate the recruitment of eosinophils during allergic pleurisy in mice. J Immunol. 2001;167:524–31.
doi: 10.4049/jimmunol.167.1.524
Rayees S, Joshi JC, Tauseef M, Anwar M, Baweja S, Rochford I, Joshi B, Hollenberg MD, Reddy SP, Mehta D. PAR2-mediated cAMP generation suppresses TRPV4-dependent Ca
doi: 10.1016/j.celrep.2019.03.053 pubmed: 30995477 pmcid: 6485424
Fuentes AL, Millis L, Sigoia LB. Laminarin, a soluble beta-glucan, inhibits macrophage phagocytosis of zymosan but has no effect on lipopolysaccharide mediated augmentation of phagocytosis. Int Immunopharmacol. 2011;11:1939–45. https://doi.org/10.1016/j.intimp.2011.08.005 .
doi: 10.1016/j.intimp.2011.08.005 pubmed: 21856445
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and [‘5N] nitrate in biological fluids. Anal Biochem. 1982;126:131–8. https://doi.org/10.1016/0003-2697(82)90118-X .
doi: 10.1016/0003-2697(82)90118-X pubmed: 7181105
Siqueira IR, Cimarosti H, Fochesatto C, Salbego C, Netto CA. Age-related susceptibility to oxygen and glucose deprivation damage in rat hippocampal slices. Brain Res. 2004;1025:226–30. https://doi.org/10.1016/j.brainres.2004.08.005 .
doi: 10.1016/j.brainres.2004.08.005 pubmed: 15464764
Mosman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytoxicity assays. J Immunol Methods. 1983;65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4 .
doi: 10.1016/0022-1759(83)90303-4
Van den Boogaard FE, Brands X, Duitman J, de Stoppelaar SF, Borensztajn KS, Roelofs JJTH, Hollenberg MD, Spek CA, Schultz MJ, Van’t VeerVan der Poll CT. Protease-activated receptor 2 facilitates bacterial dissemination in pneumococcal pneumonia. J Infect Dis. 2018;217(9):1462–71.
doi: 10.1093/infdis/jiy010
Williams JC, Lee RD, Doerschuk CM, Mackman N. Efect of PAR-2 defciency in mice on KC expression after intratracheal LPS administration. J Signal Transduct. 2011;2011:415195.
doi: 10.1155/2011/415195
Shpacovitch V, Feld M, Hollenberg MD, Luger TA, Steinhoff M. Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol. 2008;83:1309–22. https://doi.org/10.1189/jlb.0108001 .
doi: 10.1189/jlb.0108001 pubmed: 18347074
Yamaguchi R, Yamamoto T, Sakamoto A, Narahara S, Sugiuchi H, Yamaguchi Y. Neutrophil elastase enhances IL-12p40 production by lipopolysaccharide-stimulated macrophages via transactivation of the PAR-2/EGFR/TLR4 signaling pathway. Blood Cells Mol Dis. 2016;59:1–7. https://doi.org/10.1016/j.bcmd.2016.03.006 .
doi: 10.1016/j.bcmd.2016.03.006 pubmed: 27282560
Gordon S. Phagocytosis: an immunobiologic process. Immunity. 2016;44:463–75. https://doi.org/10.1016/j.immuni .
doi: 10.1016/j.immuni pubmed: 26982354
MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50. https://doi.org/10.1146/annurev.immunol.15.1.323 .
doi: 10.1146/annurev.immunol.15.1.323 pubmed: 9143691
Kim YC, Shin JE, Lee SH, Chung WJ, Lee YS, Choi BK, Choi Y. Membrane-bound proteinase 3 and PAR2 mediate phagocytosis of non-opsonized bacteria in human neutrophils. Mol Immunol. 2011;48(15–16):1966–74. https://doi.org/10.1016/j.molimm .
doi: 10.1016/j.molimm pubmed: 21700341
Zhou B, Zhou H, Ling S, Guo D, Yan Y, Zhou F, Wu Y. Activation of PAR2 or/and TLR4 promotes SW620 cell proliferation and migration via phosphorylation of ERK1/2. Oncol Rep. 2011;25:503–11.
doi: 10.3892/or.2010.1077
Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci. 1998;95:6642–6. https://doi.org/10.1073/pnas.95.12.6642 .
doi: 10.1073/pnas.95.12.6642 pubmed: 9618465 pmcid: 22580
Vergnolle N, Derian CK, D’Andrea MR, Steinhoff M, Andrade-Gordon P. Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J Immunol. 2002;69:1467–73. https://doi.org/10.4049/jimmunol.169.3.1467 .
doi: 10.4049/jimmunol.169.3.1467
Cottrell GS, Amadesi S, Pikios S, Camerer E, Willardsen JA, Murphy BR, Caughey GH, Wolters PJ, Coughlin SR, Peterson A, Knecht W, Pothoulakis C, Bunnett NW, Grady ES. Protease-activated receptor 2, dipeptidyl peptidase I, and proteases mediate Clostridium difficile toxin A enteritis. Gastroenterology. 2007;132:2422–37.
doi: 10.1053/j.gastro.2007.03.101
Nhu QM, Shirey KA, Pennini ME, Stiltz J, Vogel SN. Proteinase-activated receptor 2 activation promotes an anti-inflammatory and alternatively activated phenotype in LPS-stimulated murine macrophages. Innate Immun. 2012;18(2):193–203. https://doi.org/10.1177/1753425910395044 .
doi: 10.1177/1753425910395044 pubmed: 21239455
Liu Y, Mueller BM. Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun. 2006;2006(344):1263–70.
doi: 10.1016/j.bbrc.2006.04.005
Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Stern D, Mackman N. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood. 2001;98(5):1429–39.
doi: 10.1182/blood.V98.5.1429
Hollenberg MD, Mihara K, Polley D, Suen JY, Han A, Fairlie DP, Ramachandran R. Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br J Pharmacol. 2014;171(5):1180–94. https://doi.org/10.1111/bph.12544 .
doi: 10.1111/bph.12544 pubmed: 24354792 pmcid: 3952797

Auteurs

Ayslan Barra (A)

Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.

Amanda Ferreira Brasil (AF)

Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.

Thaís Lemos Ferreira (TL)

Laboratory of Vascular Biology, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil.

Weslley Fernandes-Braga (W)

Laboratory of Atherosclerosis and Nutritional Biochemistry (LABIN-UFMG), Department of Biochemistry and Immunology, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil.

Danielle Gomes Marconato (DG)

Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil.

Priscila Faria-Pinto (P)

Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil.

Jacqueline Isaura Alvarez-Leite (JI)

Laboratory of Atherosclerosis and Nutritional Biochemistry (LABIN-UFMG), Department of Biochemistry and Immunology, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil.

Luciano Dos Santos Aggum Capettini (L)

Laboratory of Vascular Biology, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil.

André Klein (A)

Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil. klein@ufmg.br.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH