Cannabinoids as anticancer drugs: current status of preclinical research.


Journal

British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635

Informations de publication

Date de publication:
07 2022
Historique:
received: 19 08 2021
accepted: 28 01 2022
revised: 09 12 2021
pubmed: 13 3 2022
medline: 15 7 2022
entrez: 12 3 2022
Statut: ppublish

Résumé

Drugs that target the endocannabinoid system are of interest as pharmacological options to combat cancer and to improve the life quality of cancer patients. From this perspective, cannabinoid compounds have been successfully tested as a systemic therapeutic option in a number of preclinical models over the past decades. As a result of these efforts, a large body of data suggests that the anticancer effects of cannabinoids are exerted at multiple levels of tumour progression via different signal transduction mechanisms. Accordingly, there is considerable evidence for cannabinoid-mediated inhibition of tumour cell proliferation, tumour invasion and metastasis, angiogenesis and chemoresistance, as well as induction of apoptosis and autophagy. Further studies showed that cannabinoids could be potential combination partners for established chemotherapeutic agents or other therapeutic interventions in cancer treatment. Research in recent years has yielded several compounds that exert promising effects on tumour cells and tissues in addition to the psychoactive Δ

Identifiants

pubmed: 35277658
doi: 10.1038/s41416-022-01727-4
pii: 10.1038/s41416-022-01727-4
pmc: PMC9276677
doi:

Substances chimiques

Antineoplastic Agents 0
Cannabinoids 0
Endocannabinoids 0
Cannabidiol 19GBJ60SN5

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1-13

Informations de copyright

© 2022. The Author(s).

Références

Touwn M. The religious and medicinal uses of Cannabis in China, India and Tibet. J Psychoact Drugs. 1981;13:23–34.
doi: 10.1080/02791072.1981.10471447
Zuardi AW. History of cannabis as a medicine: a review. Braz J Psychiatry. 2006;28:153–7.
pubmed: 16810401 doi: 10.1590/S1516-44462006000200015
Liesowska, A Iconic 2,500 year old Siberian princess ‘died from breast cancer’, reveals MRI scan http://siberiantimes.com/science/casestudy/features/iconic-2500-year-old-siberian-princess-died-from-breast-cancer-reveals-unique-mri-scan/ 2014. Accessed on 5 Dec 2021.
Bai Y, Jiang M, Xie T, Jiang C, Gu M, Zhou X, et al. Archaeobotanical evidence of the use of medicinal cannabis in a secular context unearthed from south China. J Ethnopharmacol. 2021;275:114114.
pubmed: 33848611 doi: 10.1016/j.jep.2021.114114
O’Shaughnessy, WB. On the preparations of the Indian hemp or Gunjah, Transactions of the Medical and Physical Society of Bengal 1838–1840, p. 421–61. Reprint in: Mikuriya, TH (Ed.): Marijuana Medical papers 1839–1972, Medi-Comp Press, Oakland, 1973.
Wood TB, Spivey WTN, Easterfield TH. Cannabinol. Part I. J Chem Soc, Trans. 1899;75:20–36.
doi: 10.1039/CT8997500020
Mechoulam R, Shvo Y, Hashish I. The structure of cannabidiol. Tetrahedron. 1963;19:2073–8.
pubmed: 5879214 doi: 10.1016/0040-4020(63)85022-X
Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964;86:1646–7.
doi: 10.1021/ja01062a046
Mechoulam R, Gaoni Y. The absolute configuration of delta-1-tetrahydrocannabinol, the major active constituent of hashish. Tetrahedron Lett. 1967;12:1109–11.
pubmed: 6039537 doi: 10.1016/S0040-4039(00)90646-4
Mechoulam R, Shani A, Edery H, Grunfeld Y. Chemical basis of hashish activity. Science. 1970;169:611–2.
pubmed: 4987683 doi: 10.1126/science.169.3945.611
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner T. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561–4.
pubmed: 2165569 doi: 10.1038/346561a0
Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–65.
pubmed: 7689702 doi: 10.1038/365061a0
Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–9.
pubmed: 1470919 doi: 10.1126/science.1470919
Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50:83–90.
pubmed: 7605349 doi: 10.1016/0006-2952(95)00109-D
Schwarz R, Ramer R, Hinz B. Targeting the endocannabinoid system as a potential anticancer approach. Drug Metab Rev. 2018;50:26–53.
pubmed: 29390896 doi: 10.1080/03602532.2018.1428344
Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sørgård M, Di Marzo V, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999;400:452–7.
pubmed: 10440374 doi: 10.1038/22761
Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134:845–52.
pubmed: 11606325 pmcid: 1573017 doi: 10.1038/sj.bjp.0704327
Pertwee RG. The diverse CB
pubmed: 17828291 doi: 10.1038/sj.bjp.0707442
Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.
pubmed: 17876302 pmcid: 2095107 doi: 10.1038/sj.bjp.0707460
Rosenthaler S, Pöhn B, Kolmanz C, Huu CN, Krewenka C, Huber A, et al. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicol Teratol. 2014;46:49–56. Erratum in: Neurotoxicol. Teratol. 2016;54:89–93.
pubmed: 25311884 doi: 10.1016/j.ntt.2014.09.003
O’Sullivan SE, Sun Y, Bennett AJ, Randall MD, Kendall DA. Time-dependent vascular actions of cannabidiol in the rat aorta. Eur J Pharmacol. 2009;612:61–8.
pubmed: 19285060 doi: 10.1016/j.ejphar.2009.03.010
Di Marzo V. The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol Res. 2009;60:77–84.
pubmed: 19559360 doi: 10.1016/j.phrs.2009.02.010
Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993;46:791–6.
pubmed: 8373432 doi: 10.1016/0006-2952(93)90486-G
Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007;14:1347–56.
pubmed: 18096503 pmcid: 2692834 doi: 10.1016/j.chembiol.2007.11.006
Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov. 2018;17:623–39. Erratum in: Corrigendum: New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 2018;17:688.
pubmed: 30116049 doi: 10.1038/nrd.2018.115
Munson AE, Harris LS, Friedman MA, Dewey WL, Carchman RA. Antineoplastic activity of cannabinoids. J Natl Cancer Inst. 1975;55:597–602.
pubmed: 1159836 doi: 10.1093/jnci/55.3.597
Galve-Roperh I, Sánchez C, Cortés ML, Gómez del Pulgar T, Izquierdo M, Guzmán M. Anti-tumoural action of cannabinoids, involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med. 2000;6:313–9.
pubmed: 10700234 doi: 10.1038/73171
Sánchez C, de Ceballos ML, Gomez del Pulgar T, Rueda D, Corbacho C, Velasco G, et al. Inhibition of glioma growth in vivo by selective activation of the CB
pubmed: 11479216
Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5:37–44.
pubmed: 19029917 doi: 10.1038/nchembio.129
Nomura DK, Long JZ, Niessen S, Hoover HS, Ng S-W, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140:49–61.
pubmed: 20079333 pmcid: 2885975 doi: 10.1016/j.cell.2009.11.027
Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011;18:846–56.
pubmed: 21802006 pmcid: 3149849 doi: 10.1016/j.chembiol.2011.05.009
Prüser JL, Ramer R, Wittig F, Ivanov I, Merkord J, Hinz B. The monoacylglycerol lipase inhibitor JZL184 inhibits lung cancer cell invasion and metastasis via the CB
pubmed: 33632876 doi: 10.1158/1535-7163.MCT-20-0589
Liu R, Wang X, Curtiss C, Landas S, Rong R, Sheikh MS, et al. Monoglyceride lipase gene knockout in mice leads to increased incidence of lung adenocarcinoma. Cell Death Dis. 2018;9:36.
pubmed: 29348400 pmcid: 5833374 doi: 10.1038/s41419-017-0188-z
Ligresti A, Bisogno T, Matias I, De Petrocellis L, Cascio MG, Cosenza V, et al. Possible endocannabinoid control of colorectal cancer growth. Gastroenterology. 2003;125:677–87.
pubmed: 12949714 doi: 10.1016/S0016-5085(03)00881-3
Bifulco M, Laezza C, Valenti M, Ligresti A, Portella G, Di Marzo V. A new strategy to block tumour growth by inhibiting endocannabinoid inactivation. FASEB J. 2004;18:1606–8.
pubmed: 15289448 doi: 10.1096/fj.04-1754fje
Winkler K, Ramer R, Dithmer S, Ivanov I, Merkord J, Hinz B. Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells. Oncotarget. 2016;7:15047–64.
pubmed: 26930716 pmcid: 4924770 doi: 10.18632/oncotarget.7592
Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, et al. Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA. 2008;105:9099–104.
pubmed: 18574142 pmcid: 2449371 doi: 10.1073/pnas.0803601105
Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of aquilaria crassna. Molecules. 2015;20:11808–29.
pubmed: 26132906 pmcid: 6331975 doi: 10.3390/molecules200711808
Irrera N, D’Ascola A, Pallio G, Bitto A, Mannino F, Arcoraci V, et al. β-Caryophyllene inhibits cell proliferation through a direct modulation of CB
doi: 10.3390/cancers12041038
Di Giacomo S, Di Sotto A, Mazzanti G, Wink M. Chemosensitizing properties of β-caryophyllene and β-caryophyllene oxide in combination with doxorubicin in human cancer cells. Anticancer Res. 2017;37:1191–6.
doi: 10.21873/anticanres.11433
Di Giacomo S, Briz O, Monte MJ, Sanchez-Vicente L, Abete L, Lozano E, et al. Chemosensitization of hepatocellular carcinoma cells to sorafenib by β-caryophyllene oxide-induced inhibition of ABC export pumps. Arch Toxicol. 2019;93:623–34.
pubmed: 30659321 doi: 10.1007/s00204-019-02395-9
Guzmán M, Duarte MJ, Blázquez C, Ravina J, Rosa MC, Galve-Roperh I, et al. A pilot clinical study of Δ
pubmed: 16804518 pmcid: 2360617 doi: 10.1038/sj.bjc.6603236
Twelves C, Sabel M, Checketts D, Miller S, Tayo B, Jove M, et al. GWCA1208 study group. A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma. Br J Cancer. 2021;124:1379–87.
pubmed: 33623076 pmcid: 8039032 doi: 10.1038/s41416-021-01259-3
Blázquez C, Carracedo A, Barrado L, Real PJ, Fernández-Luna JL, Velasco G, et al. Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J. 2006;20:2633–5.
pubmed: 17065222 doi: 10.1096/fj.06-6638fje
Caffarel MM, Andradas C, Mira E, Pérez-Gómez E, Cerutti C, Moreno-Bueno G, et al. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer. 2010;9:196.
pubmed: 20649976 pmcid: 2917429 doi: 10.1186/1476-4598-9-196
Xian XS, Park H, Cho YK, Lee IS, Kim SW, Choi MG, et al. Effect of a synthetic cannabinoid agonist on the proliferation and invasion of gastric cancer cells. J Cell Biochem. 2010;110:321–32.
pubmed: 20336665
Boyacıoğlu Ö, Bilgiç E, Varan C, Bilensoy E, Nemutlu E, Sevim D, et al. ACPA decreases non-small cell lung cancer line growth through Akt/PI3K and JNK pathways in vitro. Cell Death Dis. 2021;12:56.
pubmed: 33431819 pmcid: 7801394 doi: 10.1038/s41419-020-03274-3
Rao M, Chen D, Zhan P, Jiang J. MDA19 a novel CB
pubmed: 31053086 pmcid: 6500002 doi: 10.1186/s13062-019-0241-1
Caffarel MM, Sarrió D, Palacios J, Guzmán M, Sánchez C. Δ
pubmed: 16818634 doi: 10.1158/0008-5472.CAN-05-4566
Laezza C, Pisanti S, Crescenzi E, Bifulco M. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells. FEBS Lett. 2006;580:6076–82.
pubmed: 17055492 doi: 10.1016/j.febslet.2006.09.074
Roberto D, Klotz LH, Venkateswaran V. Cannabinoid WIN 55,212-2 induces cell cycle arrest and apoptosis, and inhibits proliferation, migration, invasion, and tumor growth in prostate cancer in a cannabinoid-receptor 2 dependent manner. Prostate. 2019;79:151–9.
pubmed: 30242861 doi: 10.1002/pros.23720
Go YY, Kim SR, Kim DY, Chae SW, Song JJ. Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci Rep. 2020;10:20622.
pubmed: 33244087 pmcid: 7692486 doi: 10.1038/s41598-020-77674-y
Zhang X, Qin Y, Pan Z, Li M, Liu X, Chen X, et al. Cannabidiol induces cell cycle arrest and cell apoptosis in human gastric cancer SGC-7901 cells. Biomolecules. 2019;9:302.
pmcid: 6723681 doi: 10.3390/biom9080302
Massi P, Valenti M, Vaccani A, Gasperi V, Perletti G, Marras E, et al. 5-Lipoxygenase and anandamide hydrolase (FAAH) mediate the antitumor activity of cannabidiol, a non-psychoactive cannabinoid. J Neurochem. 2008;104:1091–1100.
pubmed: 18028339 doi: 10.1111/j.1471-4159.2007.05073.x
Liu C, Sadat SH, Ebisumoto K, Sakai A, Panuganti BA, Ren S, et al. Cannabinoids promote progression of HPV-positive head and neck squamous cell carcinoma via p38 MAPK activation. Clin Cancer Res. 2020;26:2693–703.
pubmed: 31932491 pmcid: 7538010 doi: 10.1158/1078-0432.CCR-18-3301
Hart S, Fischer OM, Ullrich A. Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res. 2004;64:1943–50.
pubmed: 15026328 doi: 10.1158/0008-5472.CAN-03-3720
Miyato H, Kitayama J, Yamashita H, Souma D, Asakage M, Yamada J, et al. Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines. J Surg Res. 2009;155:40–7.
pubmed: 19394652 doi: 10.1016/j.jss.2008.06.045
Martínez-Martínez E, Martín-Ruiz A, Martín P, Calvo V, Provencio M, García JM. CB
pubmed: 27634891 pmcid: 5356589 doi: 10.18632/oncotarget.11968
Torres S, Lorente M, Rodríguez-Fornés F, Hernández-Tiedra S, Salazar M, García-Taboada E, et al. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther. 2011;10:90–103.
pubmed: 21220494 doi: 10.1158/1535-7163.MCT-10-0688
Scott KA, Dalgleish AG, Liu WM. The combination of cannabidiol and ∆
pubmed: 25398831 doi: 10.1158/1535-7163.MCT-14-0402
Fowler CJ. Delta
pubmed: 25669486 doi: 10.1002/cpt.84
Gómez del Pulgar T, Velasco G, Sánchez C, Haro A, Guzmán M. De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem J. 2002;363:183–8.
pubmed: 11903061 pmcid: 1222465 doi: 10.1042/bj3630183
Salazar M, Carracedo A, Salanueva IJ, Hernández-Tiedra S, Lorente M, Egia A, et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest. 2009;119:1359–72.
pubmed: 19425170 pmcid: 2673842 doi: 10.1172/JCI37948
Carracedo A, Gironella M, Lorente M, Garcia S, Guzmán M, Velasco G, et al. Cannabinoids induce apoptosis of pancreatic tumour cells via endoplasmic reticulum stress-related genes. Cancer Res. 2006;66:6748–55.
pubmed: 16818650 doi: 10.1158/0008-5472.CAN-06-0169
Oesch S, Walter D, Wachtel M, Pretre K, Salazar M, Guzmán M, et al. Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma. Mol Cancer Ther. 2009;8:1838–45.
pubmed: 19509271 doi: 10.1158/1535-7163.MCT-08-1147
Ramer R, Weinzierl U, Schwind B, Brune K, Hinz B. Ceramide is involved in R(+)-methanandamide-induced cyclooxygenase-2 expression in human neuroglioma cells. Mol Pharmacol. 2003;64:1189–98.
pubmed: 14573769 doi: 10.1124/mol.64.5.1189
Hinz B, Ramer R, Eichele K, Weinzierl U, Brune K. Up-regulation of cyclooxygenase-2 expression is involved in R(+)-methanandamide-induced apoptotic death of human neuroglioma cells. Mol Pharmacol. 2004;66:1643–51.
pubmed: 15361550 doi: 10.1124/mol.104.002618
Eichele K, Ramer R, Hinz B. R(+)-methanandamide-induced apoptosis of human cervical carcinoma cells involves a cyclooxygenase-2-dependent pathway. Pharm Res. 2009;26:346–55.
pubmed: 19015962 doi: 10.1007/s11095-008-9748-3
Eichele K, Ramer R, Hinz B. Decisive role of cyclooxygenase-2 and lipocalin-type prostaglandin D synthase in chemotherapeutics-induced apoptosis of human cervical carcinoma cells. Oncogene. 2008;27:3032–44.
pubmed: 18071320 doi: 10.1038/sj.onc.1210962
Ramer R, Heinemann K, Merkord J, Rohde H, Salamon A, Linnebacher M, et al. COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells. Mol Cancer Ther. 2013;12:69–82.
pubmed: 23220503 doi: 10.1158/1535-7163.MCT-12-0335
Maccarrone M, Lorenzon T, Bari M, Melino G, Finazzi-Agro A. Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J Biol Chem. 2000;275:31938–45.
pubmed: 10913156 doi: 10.1074/jbc.M005722200
Soliman E, Van Dross R. Anandamide-induced endoplasmic reticulum stress and apoptosis are mediated by oxidative stress in non-melanoma skin cancer: Receptor-independent endocannabinoid signaling. Mol Carcinog. 2016;55:1807–21.
pubmed: 26513129 doi: 10.1002/mc.22429
Huang L, Ramirez JC, Frampton GA, Golden LE, Quinn MA, Pae HY, et al. Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor. Lab Invest. 2011;91:1007–17.
pubmed: 21464819 pmcid: 3126905 doi: 10.1038/labinvest.2011.62
Yamada T, Ueda T, Shibata Y, Ikegami Y, Saito M, Ishida Y, et al. TRPV2 activation induces apoptotic cell death in human T24 bladder cancer cells: a potential therapeutic target for bladder cancer. Urology. 2010;76:509.e1–509.e7.
doi: 10.1016/j.urology.2010.03.029
Shrivastava A, Kuzontkoski PM, Groopman JE, Prasad A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol Cancer Ther. 2011;10:1161–72.
pubmed: 21566064 doi: 10.1158/1535-7163.MCT-10-1100
McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M. Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol. 2006;70:897–908.
pubmed: 16754784 doi: 10.1124/mol.106.023937
Jeong S, Jo MJ, Yun HK, Kim DY, Kim BR, Kim JL, et al. Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer. Cell Death Dis. 2019;10:846.
pubmed: 31699976 pmcid: 6838113 doi: 10.1038/s41419-019-2001-7
Olivas-Aguirre M, Torres-López L, Valle-Reyes JS, Hernández-Cruz A, Pottosin I, Dobrovinskaya O. Cannabidiol directly targets mitochondria and disturbs calcium homeostasis in acute lymphoblastic leukemia. Cell Death Dis. 2019;10:779.
pubmed: 31611561 pmcid: 6791884 doi: 10.1038/s41419-019-2024-0
Vara D, Salazar M, Olea-Herrero N, Guzmán M, Velasco G, Díaz-Laviada I. Anti-tumoural action of cannabinoids on hepatocellular carcinoma, role of AMPK-dependent activation of autophagy. Cell Death Differ. 2011;18:1099–111.
pubmed: 21475304 pmcid: 3131949 doi: 10.1038/cdd.2011.32
Armstrong JL, Hill DS, McKee CS, Hernandez-Tiedra S, Lorente M, Lopez-Valero I, et al. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J Invest Dermatol. 2015;135:1629–37.
pubmed: 25674907 doi: 10.1038/jid.2015.45
Ellert-Miklaszewska A, Ciechomska IA, Kaminska B. Synthetic cannabinoids induce autophagy and mitochondrial apoptotic pathways in human glioblastoma cells independently of deficiency in TP53 or PTEN tumour suppressors. Cancers (Basel). 2021;13:419.
doi: 10.3390/cancers13030419
Ivanov VN, Grabham PW, Wu CC, Hei TK. Inhibition of autophagic flux differently modulates cannabidiol-induced death in 2D and 3D glioblastoma cell cultures. Sci Rep. 2020;10:2687.
pubmed: 32060308 pmcid: 7021896 doi: 10.1038/s41598-020-59468-4
Nabissi M, Morelli MB, Amantini C, Liberati S, Santoni M, Ricci-Vitiani L, et al. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner. Int J Cancer. 2015;137:1855–69.
pubmed: 25903924 doi: 10.1002/ijc.29573
Andradas C, Byrne J, Kuchibhotla M, Ancliffe M, Jones AC, Carline B, et al. Assessment of cannabidiol and Δ
pmcid: 7829707 doi: 10.3390/cancers13020330
Huang T, Xu T, Wang Y, Zhou Y, Yu D, Wang Z, et al. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy. 2021;25:1–15.
Meyer N, Zielke S, Michaelis JB, Linder B, Warnsmann V, Rakel S, et al. AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells. Autophagy. 2018;14:1693–709.
pubmed: 29938581 pmcid: 6135628 doi: 10.1080/15548627.2018.1476812
Nithipatikom K, Endsley MP, Isbell MA, Falck JR, Iwamoto Y, Hillard CJ, et al. 2-arachidonoylglycerol, a novel inhibitor of androgen-independent prostate cancer cell invasion. Cancer Res. 2004;64:8826–30.
pubmed: 15604240 doi: 10.1158/0008-5472.CAN-04-3136
Ma C, Wu TT, Jiang PC, Li ZQ, Chen XJ, Fu K, et al. Anti-carcinogenic activity of anandamide on human glioma in vitro and in vivo. Mol Med Rep. 2016;13:1558–62.
pubmed: 26707955 doi: 10.3892/mmr.2015.4721
Ramer R, Hinz B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J Natl Cancer Inst. 2008;100:59–69.
pubmed: 18159069 doi: 10.1093/jnci/djm268
Ramer R, Merkord J, Rohde H, Hinz B. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem Pharmacol. 2010;79:955–66.
pubmed: 19914218 doi: 10.1016/j.bcp.2009.11.007
Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol. 2000;10:415–33.
pubmed: 11170864 doi: 10.1006/scbi.2000.0379
Cruz-Munoz W, Khokha R. The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci. 2008;45:291–338.
pubmed: 18568853 doi: 10.1080/10408360801973244
Ramer R, Bublitz K, Freimuth N, Merkord J, Rohde H, Haustein M, et al. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. FASEB J. 2012;26:1535–48.
pubmed: 22198381 doi: 10.1096/fj.11-198184
Blázquez C, Salazar M, Carracedo A, Lorente M, Egia A, González-Feria L, et al. Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res. 2008;68:1945–52.
pubmed: 18339876 doi: 10.1158/0008-5472.CAN-07-5176
Pourkhalili N, Ghahremani MH, Farsandaj N, Tavajohi S, Majdzadeh M, Parsa M, et al. Evaluation of anti-invasion effect of cannabinoids on human hepatocarcinoma cells. Toxicol Mech Methods. 2013;23:120–6.
pubmed: 22978792 doi: 10.3109/15376516.2012.730559
Notaro A, Emanuele S, Geraci F, D’Anneo A, Lauricella M, Calvaruso G, et al. WIN55212-2-induced expression of mir-29b1 favours the suppression of osteosarcoma cell migration in a SPARC-independent manner. Int J Mol Sci. 2019;20:5235.
pmcid: 6834304 doi: 10.3390/ijms20205235
Pietrovito L, Iozzo M, Bacci M, Giannoni E, Chiarugi P. Treatment with cannabinoids as a promising approach for impairing fibroblast activation and prostate cancer progression. Int J Mol Sci. 2020;21:787.
pmcid: 7037293 doi: 10.3390/ijms21030787
McAllister SD, Christian RT, Horowitz MP, Garcia A, Desprez PY. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol Cancer Ther. 2007;6:2921–7.
pubmed: 18025276 doi: 10.1158/1535-7163.MCT-07-0371
Soroceanu L, Murase R, Limbad C, Singer E, Allison J, Adrados I, et al. Id-1 is a key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target. Cancer Res. 2013;73:1559–69.
pubmed: 23243024 doi: 10.1158/0008-5472.CAN-12-1943
Murase R, Sumida T, Kawamura R, Onishi-Ishikawa A, Hamakawa H, McAllister SD, et al. Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression. Cancer Lett. 2016;377:11–16.
pubmed: 27087608 pmcid: 4883028 doi: 10.1016/j.canlet.2016.04.021
McAllister SD, Murase R, Christian RT, Lau D, Zielinski AJ, Allison J, et al. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation invasion and metastasis. Breast Cancer Res Treat. 2011;129:37–47. Erratum in: Breast Cancer Res Treat. 2012;133:401–4.
pubmed: 20859676 doi: 10.1007/s10549-010-1177-4
Murase R, Kawamura R, Singer E, Pakdel A, Sarma P, Judkins J, et al. Targeting multiple cannabinoid anti-tumour pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer. Br J Pharmacol. 2014;171:4464–77.
pubmed: 24910342 pmcid: 4209152 doi: 10.1111/bph.12803
Ramer R, Rohde A, Merkord J, Rohde H, Hinz B. Decrease of plasminogen activator inhibitor-1 may contribute to the anti-invasive action of cannabidiol on human lung cancer cells. Pharm Res. 2010;27:2162–74.
pubmed: 20668920 doi: 10.1007/s11095-010-0219-2
Leelawat S, Leelawat K, Narong S, Matangkasombut O. The dual effects of Δ
pubmed: 19916793 doi: 10.1080/07357900903405934
Anis O, Vinayaka AC, Shalev N, Namdar D, Nadarajan S, Anil SM, et al. Cannabis-derived compounds cannabichromene and Δ
pubmed: 33477303 pmcid: 7830447 doi: 10.3390/molecules26020465
Xu S, Ma H, Bo Y, Shao M. The oncogenic role of CB
pubmed: 31176172 doi: 10.1016/j.biopha.2019.109080
Coke CJ, Scarlett KA, Chetram MA, Jones KJ, Sandifer BJ, Davis AS, et al. Simultaneous activation of induced heterodimerization between CXCR4 chemokine receptor and cannabinoid receptor 2 (CB
pubmed: 26841863 pmcid: 4859002 doi: 10.1074/jbc.M115.712661
Laezza C, D’Alessandro A, Paladino S, Malfitano AM, Proto MC, Gazzerro P, et al. Anandamide inhibits the Wnt/β-catenin signalling pathway in human breast cancer MDA MB 231 cells. Eur J Cancer. 2012;48:3112–22.
pubmed: 22425263 doi: 10.1016/j.ejca.2012.02.062
García-Morales L, Castillo AM, Tapia Ramírez J, Zamudio-Meza H, Domínguez-Robles MDC, Meza I. CBD reverts the mesenchymal invasive phenotype of breast cancer cells induced by the inflammatory cytokine IL-1β. Int J Mol Sci. 2020;21:2429.
pmcid: 7177247 doi: 10.3390/ijms21072429
Milian L, Mata M, Alcacer J, Oliver M, Sancho-Tello M, Martín de Llano JJ, et al. Cannabinoid receptor expression in non-small cell lung cancer. Effectiveness of tetrahydrocannabinol and cannabidiol inhibiting cell proliferation and epithelial-mesenchymal transition in vitro. PLoS ONE. 2020;15:e0228909.
pubmed: 32049991 pmcid: 7015420 doi: 10.1371/journal.pone.0228909
Ramer R, Hinz B. Cannabinoids as anticancer drugs. Adv Pharmacol. 2017;80:397–436.
pubmed: 28826542 doi: 10.1016/bs.apha.2017.04.002
Portella G, Laezza C, Laccetti P, De Petrocellis L, Di Marzo V, Bifulco M. Inhibitory effects of cannabinoid CB
pubmed: 12958205 doi: 10.1096/fj.02-1129fje
Preet A, Ganju RK, Groopman JE. Δ
pubmed: 17621270 doi: 10.1038/sj.onc.1210641
Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther. 2009;8:3117–29.
pubmed: 19887554 pmcid: 4128286 doi: 10.1158/1535-7163.MCT-09-0448
Marino S, de Ridder D, Bishop RT, Renema N, Ponzetti M, Sophocleous A, et al. Paradoxical effects of JZL184, an inhibitor of monoacylglycerol lipase, on bone remodelling in healthy and cancer-bearing mice. EBioMedicine. 2019;44:452–66.
pubmed: 31151929 pmcid: 6606522 doi: 10.1016/j.ebiom.2019.05.048
Hu WR, Lian YF, Peng LX, Lei JJ, Deng CC, Xu M, et al. Monoacylglycerol lipase promotes metastases in nasopharyngeal carcinoma. Int J Clin Exp Pathol. 2014;7:3704–13.
pubmed: 25120746 pmcid: 4128981
Ramer R, Hinz B. New insights into antimetastatic and antiangiogenic effects of cannabinoids. Int Rev Cell Mol Biol. 2015;314:43–116.
pubmed: 25619715 doi: 10.1016/bs.ircmb.2014.10.005
Casanova ML, Blázquez C, Martínez-Palacio J, Villanueva C, Fernández-Aceñero MJ, Huffman JW, et al. Inhibition of skin tumour growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest. 2003;111:43–50.
pubmed: 12511587 pmcid: 151833 doi: 10.1172/JCI200316116
Blázquez C, Casanova ML, Planas A, Gómez Del Pulgar T, Villanueva C, Fernández-Aceñero MJ, et al. Inhibition of tumour angiogenesis by cannabinoids. FASEB J. 2003;17:529–31.
pubmed: 12514108 doi: 10.1096/fj.02-0795fje
Blázquez C, González-Feria L, Alvarez L, Haro A, Casanova ML, Guzmán M. Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Res. 2004;64:5617–23.
pubmed: 15313899 doi: 10.1158/0008-5472.CAN-03-3927
Solinas M, Massi P, Cantelmo AR, Cattaneo MG, Cammarota R, Bartolini D, et al. Cannabidiol inhibits angiogenesis by multiple mechanisms. Br J Pharmacol. 2012;167:1218–31.
pubmed: 22624859 pmcid: 3504989 doi: 10.1111/j.1476-5381.2012.02050.x
Thapa D, Lee JS, Heo SW, Lee YR, Kang KW, Kwak MK, et al. Novel hexahydrocannabinol analogs as potential anti-cancer agents inhibit cell proliferation and tumour angiogenesis. Eur J Pharmacol. 2011;650:64–71.
pubmed: 20950604 doi: 10.1016/j.ejphar.2010.09.073
Picardi P, Ciaglia E, Proto M, Pisanti S. Anandamide inhibits breast tumour-induced angiogenesis. Transl Med UniSa. 2014;10:8–12.
pubmed: 25147760 pmcid: 4140423
Ramer R, Fischer S, Haustein M, Manda K, Hinz B. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Biochem Pharmacol. 2014;91:202–16.
pubmed: 24976505 doi: 10.1016/j.bcp.2014.06.017
Braile M, Cristinziano L, Marcella S, Varricchi G, Marone G, Modestino L, et al. LPS-mediated neutrophil VEGF-A release is modulated by cannabinoid receptor activation. J Leukoc Biol. 2021;109:621–31.
pubmed: 32573828 doi: 10.1002/JLB.3A0520-187R
Pisanti S, Picardi P, Prota L, Proto MC, Laezza C, McGuire PG, et al. Genetic and pharmacologic inactivation of cannabinoid CB
pubmed: 21460248 doi: 10.1182/blood-2010-09-307355
Pisanti S, Borselli C, Oliviero O, Laezza C, Gazzerro P, Bifulco M. Antiangiogenic activity of the endocannabinoid anandamide, correlation to its tumour-suppressor efficacy. J Cell Physiol. 2007;211:495–503.
pubmed: 17192847 doi: 10.1002/jcp.20954
Kogan NM, Blázquez C, Alvarez L, Gallily R, Schlesinger M, Guzmán M, et al. A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells. Mol Pharmacol. 2006;70:51–9.
pubmed: 16571653 doi: 10.1124/mol.105.021089
Hofmann NA, Barth S, Waldeck-Weiermair M, Klec C, Strunk D, Malli R, et al. TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation. Biol Open. 2014;3:1164–72.
pubmed: 25395667 pmcid: 4265754 doi: 10.1242/bio.20149571
Böckmann S, Hinz B. Cannabidiol promotes endothelial cell survival by heme oxygenase-1-mediated autophagy. Cells. 2020;9:1703.
pmcid: 7407143 doi: 10.3390/cells9071703
Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2012;2:a006429.
pubmed: 22315715 pmcid: 3253027 doi: 10.1101/cshperspect.a006429
Hu Y, Ranganathan M, Shu C, Liang X, Ganesh S, Osafo-Addo A, et al. Single-cell transcriptome mapping identifies common and cell-type specific genes affected by acute delta9-tetrahydrocannabinol in humans. Sci Rep. 2020;10:3450.
pubmed: 32103029 pmcid: 7044203 doi: 10.1038/s41598-020-59827-1
Yang Y, Huynh N, Dumesny C, Wang K, He H, Nikfarjam M. Cannabinoids inhibited pancreatic cancer via P-21 activated kinase 1 mediated pathway. Int J Mol Sci. 2020;21:8035.
pmcid: 7662796 doi: 10.3390/ijms21218035
Qiu C, Yang L, Wang B, Cui L, Li C, Zhuo Y, et al. The role of 2-arachidonoylglycerol in the regulation of the tumour-immune microenvironment in murine models of pancreatic cancer. Biomed Pharmacother. 2019;115:108952.
pubmed: 31078044 doi: 10.1016/j.biopha.2019.108952
Glodde N, Jakobs M, Bald T, Tüting T, Gaffal E. Differential role of cannabinoids in the pathogenesis of skin cancer. Life Sci 2015;138:35–40.
pubmed: 25921771 doi: 10.1016/j.lfs.2015.04.003
Haustein M, Ramer R, Linnebacher M, Manda K, Hinz B. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochem Pharmacol. 2014;92:312–25.
pubmed: 25069049 doi: 10.1016/j.bcp.2014.07.014
Sekiba K, Otsuka M, Seimiya T, Tanaka E, Funato K, Miyakawa Y, et al. The fatty-acid amide hydrolase inhibitor URB597 inhibits MICA/B shedding. Sci Rep. 2020;10:15556.
pubmed: 32968163 pmcid: 7512021 doi: 10.1038/s41598-020-72688-y
McKallip RJ, Nagarkatti M, Nagarkatti PS. Δ-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumour immune response. J Immunol. 2005;174:3281–9.
pubmed: 15749859 doi: 10.4049/jimmunol.174.6.3281
Zhu LX, Sharma S, Stolina M, Gardner B, Roth MD, Tashkin DP, et al. Δ-9-tetrahydrocannabinol inhibits antitumour immunity by a CB
pubmed: 10861074 doi: 10.4049/jimmunol.165.1.373
Lei X, Chen X, Quan Y, Tao Y, Li J. Targeting CYP2J2 to enhance the anti-glioma efficacy of cannabinoid receptor 2 stimulation by inhibiting the pro-angiogenesis function of M2 microglia. Front Oncol. 2020;10:574277.
pubmed: 33330047 pmcid: 7729163 doi: 10.3389/fonc.2020.574277
Hinz B, Ramer R. Anti-tumour actions of cannabinoids. Br J Pharmacol. 2019;176:1384–94.
pubmed: 30019449 doi: 10.1111/bph.14426
Deng L, Ng L, Ozawa T, Stella N. Quantitative analyses of synergistic responses between cannabidiol and DNA-damaging agents on the proliferation and viability of glioblastoma and neural progenitor cells in culture. J Pharmacol Exp Ther. 2017;360:215–24.
pubmed: 27821713 pmcid: 5193074 doi: 10.1124/jpet.116.236968
Holland ML, Panetta JA, Hoskins JM, Bebawy M, Roufogalis BD, Allen JD, et al. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem Pharmacol. 2006;71:1146–54.
pubmed: 16458258 doi: 10.1016/j.bcp.2005.12.033
Holland ML, Lau DT, Allen JD, Arnold JC. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. Br J Pharmacol. 2007;152:815–24.
pubmed: 17906686 pmcid: 2190019 doi: 10.1038/sj.bjp.0707467
Liu WM, Scott KA, Shamash J, Joel S, Powles TB. Enhancing the in vitro cytotoxic activity of Δ
pubmed: 18608861 doi: 10.1080/10428190802239188
Morelli MB, Offidani M, Alesiani F, Discepoli G, Liberati S, Olivieri A, et al. The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2. Int J Cancer. 2014;134:2534–46.
pubmed: 24293211 doi: 10.1002/ijc.28591
Nabissi M, Morelli MB, Offidani M, Amantini C, Gentili S, Soriani A, et al. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration. Oncotarget. 2016;7:77543–57.
pubmed: 27769052 pmcid: 5363603 doi: 10.18632/oncotarget.12721
Nabissi M, Morelli MB, Santoni M, Santoni G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis. 2013;34:48–57.
pubmed: 23079154 doi: 10.1093/carcin/bgs328
Elbaz M, Ahirwar D, Xiaoli Z, Zhou X, Lustberg M, Nasser MW, et al. TRPV2 is a novel biomarker and therapeutic target in triple negative breast cancer. Oncotarget. 2016;9:33459–70.
pubmed: 30323891 pmcid: 6173360 doi: 10.18632/oncotarget.9663
Scott KA, Dennis JL, Dalgleish AG, Liu WM. Inhibiting heat shock proteins can potentiate the cytotoxic effect of cannabidiol in human glioma cells. Anticancer Res. 2015;35:5827–37.
pubmed: 26504004
Ivanov VN, Wu J, Hei TK. Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways. Oncotarget. 2017;8:74068–95.
pubmed: 29088769 pmcid: 5650324 doi: 10.18632/oncotarget.18240
Ivanov VN, Wu J, Wang TJC, Hei TK. Inhibition of ATM kinase upregulates levels of cell death induced by cannabidiol and γ-irradiation in human glioblastoma cells. Oncotarget. 2019;10:825–46. Erratum in: Oncotarget. 2019;10:7012–3.
pubmed: 30783513 pmcid: 6368233 doi: 10.18632/oncotarget.26582
Bar-Sela G, Cohen I, Campisi-Pinto S, Lewitus GM, Oz-Ari L, Jehassi A, et al. Cannabis consumption used by cancer patients during immunotherapy correlates with poor clinical outcome. Cancers (Basel). 2020;12:2447.
doi: 10.3390/cancers12092447
Taha T, Meiri D, Talhamy S, Wollner M, Peer A, Bar-Sela G. Cannabis impacts tumour response rate to nivolumab in patients with advanced malignancies. Oncologist. 2019;24:549–54.
pubmed: 30670598 pmcid: 6459234 doi: 10.1634/theoncologist.2018-0383
Kenyon J, Liu W, Dalgleish A. Report of objective clinical responses of cancer patients to pharmaceutical-grade synthetic cannabidiol. Anticancer Res. 2018;38:5831–5.
pubmed: 30275207 doi: 10.21873/anticanres.12924

Auteurs

Burkhard Hinz (B)

Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany. burkhard.hinz@med.uni-rostock.de.

Robert Ramer (R)

Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH