Energy-based step selection analysis: Modelling the energetic drivers of animal movement and habitat use.
animal movement
energetics
energy landscapes
habitat selection
movement ecology
optimal foraging theory
polar bear
step selection functions
Journal
The Journal of animal ecology
ISSN: 1365-2656
Titre abrégé: J Anim Ecol
Pays: England
ID NLM: 0376574
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
05
05
2021
accepted:
17
02
2022
pubmed:
13
3
2022
medline:
7
5
2022
entrez:
12
3
2022
Statut:
ppublish
Résumé
The energetic gains from foraging and costs of movement are expected to be key drivers of animal decision-making, as their balance is a large determinant of body condition and survival. This fundamental perspective is often missing from habitat selection studies, which mainly describe correlations between space use and environmental features, rather than the mechanisms behind these correlations. To address this gap, we present a novel parameterisation of step selection functions (SSFs), that we term the energy selection function (ESF). In this model, the likelihood of an animal selecting a movement step depends directly on the corresponding energetic gains and costs, and we can therefore assess how moving animals choose habitat based on energetic considerations. The ESF retains the mathematical convenience and practicality of other SSFs and can be quickly fitted using standard software. In this article, we outline a workflow, from data gathering to statistical analysis, and use a case study of polar bears Ursus maritimus to demonstrate application of the model. We explain how defining gains and costs at the scale of the movement step allows us to include information about resource distribution, landscape resistance and movement patterns. We further demonstrate this process with a case study of polar bears and show how the parameters can be interpreted in terms of selection for energetic gains and against energetic costs. The ESF is a flexible framework that combines the energetic consequences of both movement and resource selection, thus incorporating a key mechanism into habitat selection analysis. Further, because it is based on familiar habitat selection models, the ESF is widely applicable to any study system where energetic gains and costs can be derived, and has immense potential for methodological extensions.
Identifiants
pubmed: 35277858
doi: 10.1111/1365-2656.13687
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
946-957Subventions
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : 2019-04270
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : 261231-03
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : 261231-2004
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : 305472-08
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : 305472-2013
Informations de copyright
© 2022 The Authors. Journal of Animal Ecology © 2022 British Ecological Society.
Références
Arthur, S. M., Manly, B. F. J., Mcdonald, L. L., & Garner, G. W. (1996). Assessing habitat selection when availability changes. Ecology, 77, 215-227. https://doi.org/10.2307/2265671
Avgar, T., Potts, J. R., Lewis, M. A., & Boyce, M. S. (2016). Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods in Ecology and Evolution, 7, 619-630. https://doi.org/10.1111/2041-210X.12528
Bastille-Rousseau, G., Murray, D. L., Schaefer, J. A., Lewis, M. A., Mahoney, S. P., & Potts, J. R. (2018). Spatial scales of habitat selection decisions: Implications for telemetry-based movement modelling. Ecography, 41, 437-443. https://doi.org/10.1111/ecog.02655
Bastille-Rousseau, G., Wall, J., Douglas-Hamilton, I., Lesowapir, B., Loloju, B., Mwangi, N., & Wittemyer, G. (2020). Landscape-scale habitat response of African elephants shows strong selection for foraging opportunities in a human dominated ecosystem. Ecography, 43, 149-160. https://doi.org/10.1111/ecog.04240
Beyer, H. L., Haydon, D. T., Morales, J. M., Frair, J. L., Hebblewhite, M., Mitchell, M., & Matthiopoulos, J. (2010). The interpretation of habitat preference metrics under use-availability designs. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2245-2254. https://doi.org/10.1098/rstb.2010.0083
Bidder, O. R., Goulding, C., Toledo, A., Van Walsum, T. A., Siebert, U., & Halsey, L. G. (2017). Does the treadmill support valid energetics estimates of field locomotion? Integrative and Comparative Biology, 57, 301-319. https://doi.org/10.1093/icb/icx038
Boyce, M. S. (2006). Scale for resource selection functions. Diversity and Distributions, 12, 269-276. https://doi.org/10.1111/j.1366-9516.2006.00243.x
Boyce, M. S., Mao, J. S., Merrill, E. H., Fortin, D., Turner, M. G., Fryxell, J., & Turchin, P. (2003). Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Ecoscience, 10, 421-431. https://doi.org/10.1080/11956860.2003.11682790
Brooke, C. F., Fortin, D., Kraaij, T., Fritz, H., Kalule-Sabiti, M. J., & Venter, J. A. (2020). Poaching impedes the selection of optimal post-fire forage in three large grazing herbivores. Biological Conservation, 241, 108393. https://doi.org/10.1016/j.biocon.2019.108393
Castro de la Guardia, L., Myers, P. G., Derocher, A. E., Lunn, N. J., & Terwisscha van Scheltinga, A. D. (2017). Sea ice cycle in western Hudson Bay, Canada, from a polar bear perspective. Marine Ecology Progress Series, 564, 225-233. https://doi.org/10.3354/meps11964
Cornioley, T., Börger, L., Ozgul, A., & Weimerskirch, H. (2016). Impact of changing wind conditions on foraging and incubation success in male and female wandering albatrosses. Journal of Animal Ecology, 85, 1318-1327. https://doi.org/10.1111/1365-2656.12552
Crête, M., & Larivière, S. (2003). Estimating the costs of locomotion in snow for coyotes. Canadian Journal of Zoology, 81, 1808-1814. https://doi.org/10.1139/Z03-182
Duparc, A., Garel, M., Marchand, P., Dubray, D., Maillard, D., & Loison, A. (2020). Through the taste buds of a large herbivore: Foodscape modeling contributes to an understanding of forage selection processes. Oikos, 129, 170-183. https://doi.org/10.1111/oik.06386
Durner, G. M., Douglas, D. C., Albeke, S. E., Whiteman, J. P., Amstrup, S. C., Richardson, E. S., Wilson, R. R., & Ben-David, M. (2017). Increased Arctic Sea ice drift alters adult female polar bear movements and energetics. Global Change Biology, 23, 3460-3473. https://doi.org/10.1111/gcb.13746
Eisaguirre, J. M., Booms, T. L., Barger, C. P., Lewis, S. B., & Breed, G. A. (2020). Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds. Journal of Animal Ecology, 89, 2567-2583. https://doi.org/10.1111/1365-2656.13335
Forester, J., Kyung Im, H., & Rathouz, P. (2009). Accounting for animal movement in estimation of resource selection functions: Sampling and data analysis. Ecology, 90, 3554-3565. https://doi.org/10.1890/08-0874.1
Fortin, D., Fortin, M. E., Beyer, H. L., Duchesne, T., Courant, S., & Dancose, K. (2009). Group-size-mediated habitat selection and group fusion - Fission dynamics of bison under predation risk. Ecology, 90, 2480-2490. https://doi.org/10.1890/08-0345.1
Fortin, D., Fryxell, J. M., O'brodovich, L., & Frandsen, D. (2003). Foraging ecology of bison at the landscape and plant community levels: The applicability of energy maximization principles. Oecologia, 134, 219-227. https://doi.org/10.1007/s00442-002-1112-4
Fryxell, J. M. (1997). Evolutionary dynamics of habitat use. Evolutionary Ecology, 11, 687-701. https://doi.org/10.1023/A:1018434302138
Griffen, B. D. (2018). Modeling the metabolic costs of swimming in polar bears (Ursus maritimus). Polar Biology, 41, 491-503. https://doi.org/10.1007/s00300-017-2209-x
Halsey, L. G. (2016). Terrestrial movement energetics: Current knowledge and its application to the optimising animal. Journal of Experimental Biology, 219, 1424-1431. https://doi.org/10.1242/jeb.133256
Hooten, M. B., Scharf, H. R., & Morales, J. M. (2019). Running on empty: Recharge dynamics from animal movement data. Ecology Letters, 22, 377-389. https://doi.org/10.1111/ele.13198
Hurst, R. J., Leonard, M. L., Watts, P. D., Beckerton, P., & Øritsland, N. A. (1982). Polar bear locomotion: Body temperature and energetic cost. Canadian Journal of Zoology, 60, 40-44. https://doi.org/10.1139/z82-005
Hurst, R. J., Øritsland, N. A., & Watts, P. (1982). Body mass, temperature and cost of walking in polar bears. Acta Physiologica Scandinavica, 115, 391-395. https://doi.org/10.1111/j.1748-1716.1982.tb07096.x
Jakobsson, M., Jakobsson, M., Mayer, L. A., Bringensparr, C., Castro, C. F., Mohammad, R., Johnson, P., Ketter, T., Accettella, D., Amblas, D., An, L., Arndt, J. E., Canals, M., Casamor, J. L., Chauche, N., Coakley, B., Danielson, S., Demarte, M., Dickson, M. L., … Dreutter, S. (2020). The international bathymetric chart of the Arctic ocean version. Scientific Data, 7, 176. https://doi.org/10.1038/s41597-020-0520-9
Johnson, A. C., & Derocher, A. E. (2020). Variation in habitat use of Beaufort Sea polar bears. Polar Biology, 43, 1247-1260. https://doi.org/10.1007/s00300-020-02705-3
Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. Science, 348, aaa2478. https://doi.org/10.1126/science.aaa2478
Klappstein, N. J., Potts, J. R., Michelot, T., Börger, L., Pilfold, N. W., Lewis, M. A. & Derocher, A. E. (2022). Data from: Reproducing the analyses of the article “Energy-based step selection analysis: Modelling the energetic drivers of animal movement and habitat use”. Zenodo, https://doi.org/10.5281/zenodo.6319709
Klappstein, N. J., Togunov, R. R., Reimer, J. R., Lunn, N. J., & Derocher, A. E. (2020). Patterns of sea ice drift and polar bear (Ursus maritimus) movement in Hudson Bay. Marine Ecology Progress Series, 641, 227-240. https://doi.org/10.3354/meps13293
Latombe, G., Parrott, L., Basille, M., & Fortin, D. (2014). Uniting statistical and individual-based approaches for animal movement modelling. PLoS ONE, 9, e99938. https://doi.org/10.1371/journal.pone.0099938
Lone, K., Kovacs, K. M., Lydersen, C., Fedak, M., Andersen, M., Lovell, P., & Aars, J. (2018). Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic. Scientific Reports, 8, 9677. https://doi.org/10.1038/s41598-018-27947-4
Long, R. A., Terry Bowyer, R., Porter, W. P., Mathewson, P., Monteith, K. L., & Kie, J. G. (2014). Behavior and nutritional condition buffer a large-bodied endotherm against direct and indirect effects of climate. Ecological Monographs, 84, 513-532. https://doi.org/10.1890/13-1273.1
Mauritzen, M., Derocher, A. E., & Wiig, Ø. (2001). Space-use strategies of female polar bears in a dynamic sea ice habitat. Canadian Journal of Zoology, 79, 1704-1713. https://doi.org/10.1139/z01-126
McCall, A. G., Pilfold, N. W., Derocher, A. E., & Lunn, N. J. (2016). Seasonal habitat selection by adult female polar bears in western Hudson Bay. Population Ecology, 58, 407-419. https://doi.org/10.1007/s10144-016-0549-y
Merkle, J. A., Fortin, D., & Morales, J. M. (2014). A memory-based foraging tactic reveals an adaptive mechanism for restricted space use. Ecology Letters, 17, 924-931. https://doi.org/10.1111/ele.12294
Michelot, T., Blackwell, P. G., & Matthiopoulos, J. (2019). Linking resource selection and step selection models for habitat preferences in animals. Ecology, 100, e02452. https://doi.org/10.1002/ecy.2452
Munden, R., Börger, L., Wilson, R. P., Redcliffe, J., Brown, R., Garel, M., & Potts, J. R. (2021). Why did the animal turn? Time-varying step selection analysis for inference between observed turning points in high frequency data. Methods in Ecology and Evolution, 12, 921-932. https://doi.org/10.1111/2041-210x.13574
Nicosia, A., Duchesne, T., Rivest, L. P., & Fortin, D. (2017). A multi-state conditional logistic regression model for the analysis of animal movement. The Annals of Applied Statistics, 11, 1537-1560. https://doi.org/10.1214/17-AOAS1045
Northrup, J. M., Hooten, M. B., Anderson, C. R. J., & Wittemyer, G. (2013). Practical guidance on characterizing availability in resource selection functions under a use-availability design. Ecology, 94, 1456-1463. https://doi.org/10.1890/12-1688.1
Øritsland, N., Jonkel, C., & Ronald, K. (1976). A respiration chamber for exercising polar bears. Norwegian Journal of Zoology, 24, 65-67.
Owen-Smith, N., Fryxell, J. M., & Merrill, E. H. (2010). Foraging theory upscaled: The behavioural ecology of herbivore movement. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 365, 2267-2278. https://doi.org/10.1098/rstb.2010.0095
Pagano, A. M., Atwood, T. C., Durner, G. M., & Williams, T. M. (2020). The seasonal energetic landscape of an apex marine carnivore, the polar bear. Ecology, 101, e02959. https://doi.org/10.1002/ecy.2959
Pagano, A. M., Durner, G. M., Rode, K. D., Atwood, T. C., Atkinson, S. N., Peacock, E., Costa, D. P., Owen, M. A., & Williams, T. M. (2018). High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science, 359, 568-572. https://doi.org/10.1126/science.aan8677
Pagano, A. M., & Williams, T. M. (2019). Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecology and Evolution, 9, 4210-4219. https://doi.org/10.1002/ece3.5053
Pilfold, N. W., Derocher, A. E., & Richardson, E. S. (2014). Influence of intraspecific competition on the distribution of a wide-ranging, non-territorial carnivore. Global Ecology and Biogeography, 23, 425-435. https://doi.org/10.1111/geb.12112
Pilfold, N. W., Derocher, A. E., Stirling, I., Richardson, E. S., & Andriashek, D. S. (2012). Age and sex composition of seals killed by polar bears in the Eastern Beaufort Sea. PLoS ONE, 7, e41429. https://doi.org/10.1371/journal.pone.0041429
Potts, J. R., Bastille-Rousseau, G., Murray, D. L., Schaefer, J. A., & Lewis, M. A. (2014). Predicting local and non-local effects of resources on animal space use using a mechanistic step selection model. Methods in Ecology and Evolution, 5, 253-262. https://doi.org/10.1111/2041-210X.12150
Pya, N., & Wood, S. N. (2015). Shape constrained additive models. Statistics and Computing, 25, 543-559. https://doi.org/10.1007/s11222-013-9448-7
Pyke, G. H. (2019). Animal movements - An optimal foraging theory approach. In Encyclopedia of animal behavior (Vol. 2, 2nd ed., pp. 149-156). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.90160-2
Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. The Quarterly Review of Biology, 52, 137-154.
Ramsay, M. A., & Stirling, I. (1986). On the mating system of polar bears. Canadian Journal of Zoology, 64, 2142-2151. https://doi.org/10.1139/z86-329
Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics, 2, 369-404. https://doi.org/10.1146/annurev.es.02.110171.002101
Shepard, E. L. C., Wilson, R. P., Quintana, F., Gó Mez Laich, A., & Forman, D. W. (2009). Pushed for time or saving on fuel: Fine-scale energy budgets shed light on currencies in a diving bird. Proceedings of the Royal Society B, 276, 3149-3155. https://doi.org/10.1098/rspb.2009.0683
Shepard, E. L. C., Wilson, R. P., Rees, W. G., Grundy, E., Lambertucci, S. A., & Vosper, S. B. (2013). Energy landscapes shape animal movement ecology. The American Naturalist, 182, 298-312. https://doi.org/10.1086/671257
Spreen, G., Kaleschke, L., & Heygster, G. (2008). Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113, C02S03. https://doi.org/10.1029/2005JC003384
Stirling, I., Spencer, C., & Andriashek, D. (2016). Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Marine Mammal Science, 32, 13-37. https://doi.org/10.1111/mms.12291
Taylor, C. R., Schmidt-Nielsen, K., & Raab, J. L. (1970). Scaling of energetic cost of running to body size in mammals. The American Journal of Physiology, 219, 1104-1107. https://doi.org/10.1152/ajplegacy.1970.219.4.1104
Thurfjell, H., Ciuti, S., & Boyce, M. S. (2014). Applications of step-selection functions in ecology and conservation. Movement Ecology, 4, 1-12. https://doi.org/10.1186/2051-3933-2-4
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., & Maslanik, J. (2019). Polar pathfinder weekly 25 km EASE-grid sea ice motion vectors, version 4, Northern Hemisphere.
Watts, P., Ferguson, K. L., & Draper, B. (1991). Energetic output of subadult polar bears (Ursus maritimus): Resting, disturbance and locomotion. Comparative Biochemistry and Physiology, 98A, 191-193. https://doi.org/10.1016/0300-9629(91)90518-H
Williams, T. M., Peter-Heide Jørgensen, M., Pagano, A. M., & Bryce, C. M. (2020). Hunters versus hunted: New perspectives on the energetic costs of survival at the top of the food chain. Functional Ecology, 34, 2015-2029. https://doi.org/10.1111/1365-2435.13649
Wilson, R. P., Börger, L., Holton, M. D., Scantlebury, D. M., Gómez-Laich, A., Quintana, F., Rosell, F., Graf, P. M., Williams, H., Gunner, R., Hopkins, L., Marks, N., Geraldi, N. R., Duarte, C. M., Scott, R., Strano, M. S., Robotka, H., Eizaguirre, C., Fahlman, A., & Shepard, E. L. (2020). Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. Journal of Animal Ecology, 89, 161-172. https://doi.org/10.1111/1365-2656.13040
Wilson, R. P., Griffiths, I. W., Legg, P. A., Friswell, M. I., Bidder, O. R., Halsey, L. G., Lambertucci, S. A., & Shepard, E. L. C. (2013). Turn costs change the value of animal search paths. Ecology Letters, 16, 1145-1150. https://doi.org/10.1111/ele.12149
Wilson, R. P., Quintana, F., & Hobson, V. J. (2012). Construction of energy landscapes can clarify the movement and distribution of foraging animals. Proceedings of the Society B, 279, 975-980. https://doi.org/10.1098/rspb.2011.1544
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman and Hall/CRC.