Role of autonomic system imbalance in neurogenic pulmonary oedema.
autonomic nerves system
inflammatory reflex
neurogenic pulmonary oedema
sympathetic nerve
vagus nerve
Journal
The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
revised:
09
02
2022
received:
19
08
2021
accepted:
04
03
2022
pubmed:
13
3
2022
medline:
12
4
2022
entrez:
12
3
2022
Statut:
ppublish
Résumé
Neurogenic pulmonary oedema (NPE) is a life-threatening complication that develops rapidly and dramatically after an injury to the central nervous system (CNS). The autonomic system imbalance produced by severe brain damage may play an important role in the development of NPE. Activation of the sympathetic nervous system and inhibition of the vagus nerve system are essential prerequisites for autonomic system imbalance. The more severe the damage, the more pronounced the phenomenon. Sympathetic hyperactivity is associated with increased release of catecholamines from peripheral sympathetic nerve endings, which can cause dramatic changes in haemodynamics and cause pulmonary oedema. On the other hand, the abnormal inflammatory response caused by vagus nerve inhibition may also play an important role in the pathogenesis of NPE. The perspective of autonomic system imbalance seems to perfectly integrate the existing pathogenesis of NPE and can explain the entire development progression of NPE.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1645-1657Informations de copyright
© 2022 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Références
Abe, C., Inoue, T., Inglis, M. A., Viar, K. E., Huang, L., Ye, H., Rosin, D. L., Stornetta, R. L., Okusa, M. D., & Guyenet, P. G. (2017). C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nature Neuroscience, 20(5), 700-707. https://doi.org/10.1038/nn.4526
Andersson, U. (2020). The cholinergic anti-inflammatory pathway alleviates acute lung injury. Molecular Medicine, 26(1), 64-67. https://doi.org/10.1186/s10020-020-00184-0
Astrup, A. S., Tarnow, L., Rossing, P., Hansen, B. V., Hilsted, J., & Parving, H.-H. (2006). Cardiac autonomic neuropathy predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care, 29(2), 334-339. https://doi.org/10.2337/diacare.29.02.06.dc05-1242
Avlonitis, V. S., Wigfield, C. H., Kirby, J. A., & Dark, J. H. (2015). The hemodynamic mechanisms of lung injury and systemic inflammatory response following brain death in the transplant donor. American Journal of Transplantation, 5(4), 684-693. https://doi.org/10.1111/j.1600-6143.2005.00755.x
Ay, H., Koroshetz, W. J., Benner, T., Vangel, M. G., Melinosky, C., Arsava, E. M., Ayata, C., Zhu, M., Schwamm, L. H., & Sorensen, A. G. (2006). Neuroanatomic correlates of stroke-related myocardial injury. Neurology, 66(9), 1325-1329. https://doi.org/10.1212/01.wnl.0000206077.13705.6d
Baumann, A., Audibert, G., McDonnell, J., & Mertes, P. M. (1993). Neurogenic pulmonary edema. Journal of Emergency Medicine, 11(2), 207.
Baumann, A., Audibert, G., McDonnell, J., & Mertes, P. M. (2007). Neurogenic pulmonary edema. Acta Anaesthesiologica Scandinavica, 51(4), 447-455. https://doi.org/10.1111/j.1399-6576.2007.01276.x
Bellinger, D. L., & Lorton, D. (2014). Autonomic regulation of cellular immune function. Autonomic Neuroscience: Basic & Clinical, 182(5), 15-41. https://doi.org/10.1016/j.autneu.2014.01.006
Bernik, T. R., Friedman, S. G., Ochani, M., DiRaimo, R., Susarla, S., Czura, C. J., & Tracey, K. J. (2002). Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. Journal of Vascular Surgery, 36(6), 1231-1236. https://doi.org/10.1067/mva.2002.129643
Bernik, T. R., Friedman, S. G., Ochani, M., Diraimo, R., Ulloa, L., Yang, H., Sudan, S., Czura, C. J., Ivanova, S. M., & Tracey, K. J. (2002). Pharmacological stimulation of the cholinergic antiinflammatory pathway. Journal of Experimental Medicine, 195(6), 781-788. https://doi.org/10.1084/jem.20011714
Bernstein, I. M., Damron, D., Schonberg, A. L., Sallam, R. M., & Shapiro, R. (2009). The relationship of plasma volume, sympathetic tone, and proinflammatory cytokines in young healthy nonpregnant women. Reproductive Sciences, 16(10), 980-985. https://doi.org/10.1177/1933719109338876
Besedovsky, H. O., Rey, A. E. D., Sorkin, E., & Dinarello, C. A. (1986). Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science, 233(4764), 652-654. https://doi.org/10.1126/science.3014662
Bhatia, M., & Moochhala, S. (2004). Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. Journal of Pathology, 202(2), 145-156. https://doi.org/10.1002/path.1491
Bonaz, B., Sinniger, V., & Pellissier, S. (2016). Vagal tone: Effects on sensitivity, motility, and inflammation. Neurogastroenterology & Motility the Official Journal of the European Gastrointestinal Motility Society, 28(4), 455-462. https://doi.org/10.1111/nmo.12817
Borovikova, L. V., Ivanova, S., Nardi, D., Zhang, M., & Tracey, K. J. (2000). Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Autonomic Neuroscience: Basic & Clinical, 85(1-3), 141-147. https://doi.org/10.1016/S1566-0702(00)00233-2
Brambrink, A. M., & Dick, W. F. (1997). Neurogenic pulmonary edema. Pathogenesis, clinical picture and therapy. Anaesthesist, 46(11), 953-963. https://doi.org/10.1007/s001010050492
Bratton, S. L., & Davis, R. L. (1997). Acute lung injury in isolated traumatic brain injury. Neurosurgery, 40(4), 707-712. https://doi.org/10.1097/00006123-199704000-00009
Brown, R. H., Beyerl, B. D., Iseke, R., & Lavyne, M. H. (1986). Medulla oblongata edema associated with neurogenic pulmonary edema. Case report. Journal of Neurosurgery, 64(3), 494-500. https://doi.org/10.3171/jns.1986.64.3.0494
Bruno, B., Valérie, S., & Sonia, P. (2017). The vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Frontiers in Immunology, 8, 1452. https://doi.org/10.3389/fimmu.2017.01452
Busl, K. M., & Bleck, T. P. (2015). Neurogenic pulmonary edema. Critical Care Medicine, 43(8), 1710-1715. https://doi.org/10.1097/CCM.0000000000001101
Butcher, K. S., & Cechetto, D. F. (1998). Receptors in lateral hypothalamic area involved in insular cortex sympathetic responses. The American Journal of Physiology, 275(2), H689-H696. https://doi.org/10.1152/ajpheart.1998.275.2.H689
Carr, D., & Blalock, J. E. (1991). Neuropeptide hormones and receptors common to the immune and neuroendocrine systems: Bidirectional pathway of intersystem communication. In R. Ader, D. L. Felten, & N. Cohen (Eds.), Psychoneuroimmunology (pp. 573-588). Academic Press.
Chapleau, M. W., & Sabharwal, R. (2011). Methods of assessing vagus nerve activity and reflexes. Heart Failure Reviews, 16(2), 109-127. https://doi.org/10.1007/s10741-010-9174-6
Chen, H. I. (2009). From neurogenic pulmonary edema to fat embolism syndrome: A brief review of experimental and clinical investigations of acute lung injury and acute respiratory distress syndrome. Chinese Journal of Physiology, 52(5 Suppl), 339-344. https://doi.org/10.4077/CJP.2009.AMH036
Chen, H. I., Sun, S. C., & Chai, C. Y. (1973). Pulmonary edema and hemorrhage resulting from cerebral compression. American Journal of Physiology, 224(2), 223-229. https://doi.org/10.1152/ajplegacy.1973.224.2.223
Colivicchi, F., Bassi, A., Santini, M., & Caltagirone, C. (2004). Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke, 35(9), 2094. https://doi.org/10.1161/01.STR.0000138452.81003.4c
Darragh, T. M., & Simon, R. P. (1985). Nucleus tractus solitarius lesions elevate pulmonary arterial pressure and lymph flow. Annals of Neurology, 17(6), 565-569. https://doi.org/10.1002/ana.410170606
de Raedt, S., de Vos, A., & de Keyser, J. (2015). Autonomic dysfunction in acute ischemic stroke: An underexplored therapeutic area? Journal of the Neurological Sciences, 348(1-2), 24-34. https://doi.org/10.1016/j.jns.2014.12.007
Dettbarn, C. L., & Davidson, L. J. (1989). Pulmonary complications in the patient with acute head injury: Neurogenic pulmonary edema. Heart & Lung, 18(6), 583-589.
Duris, K., Lipkova, J., & Jurajda, M. (2017). Cholinergic anti-inflammatory pathway and stroke. Current Drug Delivery, 14(4), 449-457. https://doi.org/10.2174/1567201814666170201150015
Esterov, D., & Greenwald, B. (2017). Autonomic dysfunction after mild traumatic brain injury. Brain Sciences, 7(12), 100. https://doi.org/10.3390/brainsci7080100
Fein, A., & Rackow, E. C. (1982). Neurogenic pulmonary edema. Chest, 81(3), 318-320. https://doi.org/10.1378/chest.81.3.318
Fontes, R., Aguiar, P. H., Zanetti, M. V., Andrade, F., Mandel, M., & Teixeira, M. J. (2003). Acute neurogenic pulmonary edema: Case reports and literature review. Journal of Neurosurgical Anesthesiology, 15(2), 144-150. https://doi.org/10.1097/00008506-200304000-00013
Guyenet, P. G., Stornetta, R. L., Bochorishvili, G., DePuy, S. D., Burke, P. G. R., & Abbott, S. B. G. (2013). C1 neurons: The body's EMTs. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 305(3), R187-R204. https://doi.org/10.1152/ajpregu.00054.2013
Hackenberry, L. E., Miner, M. E., Rea, G. L., Woo, J., & Graham, S. H. (1982). Biochemical evidence of myocardial injury after severe head trauma. Critical Care Medicine, 10(10), 641-644. https://doi.org/10.1097/00003246-198210000-00004
Harari, A., Rapin, M., Regnier, B., Comoy, J., & Caron, J. P. (1976). Letter: Normal pulmonary-capillary pressures in the late phase of neurogenic pulmonary oedema. Lancet, 1(7957), 494. https://doi.org/10.1016/S0140-6736(76)91530-0
Hermann, G. E., Emch, G. S., Tovar, C. A., & Rogers, R. C. (2001). C-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 280(1), R289. https://doi.org/10.1152/ajpregu.2001.280.1.R289
Hilz, M. J., Dütsch, M. M., Perrine, K., Nelson, P. K., & Devinsky, O. (2010). Hemispheric influence on autonomic modulation and baroreflex sensitivity. Annals of Neurology, 49(5), 575-584. https://doi.org/10.1002/ana.1006
Hilz, M. J., Liu, M., Roy, S., & Wang, R. (2019). Autonomic dysfunction in the neurological intensive care unit. Clinical Autonomic Research, 29(3), 301-311. https://doi.org/10.1007/s10286-018-0545-8
Hörtnagl, H., Hammerle, A. F., Hackl, J. M., Brücke, T., Rumpl, E., & Hörtnagl, H. (1980). The activity of the sympathetic nervous system following severe head injury. Intensive Care Medicine, 6(3), 169-177. https://doi.org/10.1007/BF01757299
Howarth, D., Burstal, R., Hayes, C., Lan, L., & Lantry, G. (1999). Autonomic regulation of lymphatic flow in the lower extremity demonstrated on lymphoscintigraphy in patients with reflex sympathetic dystrophy. Clinical Nuclear Medicine, 24(6), 383-387. https://doi.org/10.1097/00003072-199906000-00001
Inobe, J. J., Mori, T., Ueyama, H., Kumamoto, T., & Tsuda, T. (2000). Neurogenic pulmonary edema induced by primary medullary hemorrhage: A case report. Journal of the Neurological Sciences, 172(1), 73-76. https://doi.org/10.1016/S0022-510X(99)00295-6
Karlsson, A. K. (2006). Autonomic dysfunction in spinal cord injury: Clinical presentation of symptoms and signs. Progress in Brain Research, 152, 1-8. https://doi.org/10.1016/S0079-6123(05)52034-X
Keegan, M. T., & Lanier, W. L. (1999). Pulmonary edema after resection of a fourth ventricle tumor: Possible evidence for a medulla-mediated mechanism. Mayo Clinic Proceedings Mayo Clinic, 74(3), 264-268. https://doi.org/10.4065/74.3.264
Kerr, N., de Rivero Vaccari, P. J., Abbassi, S., Kaur, H., Zambrano, R., Wu, S., Dietrich, W. D., & Keane, R. W. (2018). Traumatic brain injury-induced acute lung injury: Evidence for activation and inhibition of a neural-respiratory-inflammasome axis. Journal of Neurotrauma, 35(17), 2017-5430. https://doi.org/10.1089/neu.2017.5430
Koopman, F. A., Stoof, S. P., Straub, R. H., van Maanen, M., Vervoordeldonk, M. J., & Tak, P. P. (2011). Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Molecular Medicine, 17(9-10), 937-948. https://doi.org/10.2119/molmed.2011.00065
Loane, D. J., & Faden, A. I. (2010). Neuroprotection for traumatic brain injury: Translational challenges and emerging therapeutic strategies. Trends in Pharmacological Sciences, 31(12), 596-604. https://doi.org/10.1016/j.tips.2010.09.005
Luyer, M., Greve, J. W. M., Hadfoune, M., Jacobs, J. A., Dejong, C. H., & Buurman, W. A. (2005). Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. Journal of Experimental Medicine, 202(8), 1023-1029. https://doi.org/10.1084/jem.20042397
Maire, F. W., & Patton, H. D. (1956). Neural structures involved in the genesis of preoptic pulmonary edema, gastric erosions and behavior changes. The American Journal of Physiology, 184(2), 345-350. https://doi.org/10.1152/ajplegacy.1956.184.2.345
Marshall, S. A., & Nyquist, P. (2009). A change of position for neurogenic pulmonary edema. Neurocritical Care, 10(2), 213-217. https://doi.org/10.1007/s12028-008-9164-x
Martelli, D., McKinley, M. J., & McAllen, R. M. (2014). The cholinergic anti-inflammatory pathway: A critical review. Autonomic Neuroscience, 182, 65-69. https://doi.org/10.1016/j.autneu.2013.12.007
Masuda, T., Sato, K., Yamamoto, S. I., Matsuyama, N., Shimohama, T., Matsunaga, A., Obuchi, S., Shiba, Y., Shimizu, S., & Izumi, T. (2002). Sympathetic nervous activity and myocardial damage immediately after subarachnoid hemorrhage in a unique animal model. Stroke, 33(6), 1671-1676. https://doi.org/10.1161/01.STR.0000016327.74392.02
Mcclellan, M. D., Dauber, I. M., & Weil, J. V. (1989). Elevated intracranial pressure increases pulmonary vascular permeability to protein. Journal of Applied Physiology, 67(3), 1185-1191. https://doi.org/10.1152/jappl.1989.67.3.1185
Merhi, M., Helme, R. D., & Khalil, Z. (1998). Age-related changes in sympathetic modulation of sensory nerve activity in rat skin. Inflammation Research, 47(6), 239-244. https://doi.org/10.1007/s000110050324
Meyfroidt, G., Baguley, I. J., & Menon, D. K. (2017). Paroxysmal sympathetic hyperactivity: The storm after acute brain injury. Lancet Neurology, 16(9), 721-729. https://doi.org/10.1016/S1474-4422(17)30259-4
Mølgaard, H., Sørensen, K. E., & Bjerregaard, P. (1991). Attenuated 24-h heart rate variability in apparently healthy subjects, subsequently suffering sudden cardiac death. Clinical Autonomic Research, 1(3), 233-237. https://doi.org/10.1007/BF01824992
Murray, K., & Reardon, C. (2018). The cholinergic anti-inflammatory pathway revisited. Neurogastroenterology and Motility, 30(3). https://doi.org/10.1111/nmo.13288
Nance, D. M., & Sanders, V. M. (2007). Autonomic innervation and regulation of the immune system (1987-2007). Brain, Behavior, and Immunity, 21(6), 736-745. https://doi.org/10.1016/j.bbi.2007.03.008
Naredi, S., Lambert, G., Edén, E., Zäll, S., Runnerstam, M., Rydenhag, B., & Friberg, P. (2000). Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke; a Journal of Cerebral Circulation, 31(4), 901-906. https://doi.org/10.1161/01.STR.31.4.901
Norman, G. J., Morris, J. S., Karelina, K., Weil, Z. M., Zhang, N., Al-Abed, Y., Brothers, H. M., Wenk, G. L., Pavlov, V. A., Tracey, K. J., & DeVries, A. C. (2011). Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: A role for cholinergic α7 nicotinic receptors. The Journal of Neuroscience, 31(9), 3446-3452. https://doi.org/10.1523/JNEUROSCI.4558-10.2011
Ochiai, H., Yamakawa, Y., & Kubota, E. (2001). Deformation of the ventrolateral medulla oblongata by subarachnoid hemorrhage from ruptured vertebral artery aneurysms causes neurogenic pulmonary edema. Neurologia Medico-Chirurgica, 41(11), 529-534. https://doi.org/10.2176/nmc.41.529
O'Connor, P. M., Marshall, B., Baban, B., Ocasio, H., Wilson, K., Sun, J., & Ray, S. (2018). Oral NaHCO3 activates the splenic anti-inflammatory pathway; evidence vagal efferent signals are transmitted to the spleen via a neuronal like function of mesothelial cells. The FASEB Journal, 200(10), 3568-3586. https://doi.org/10.4049/jimmunol.1701605
Olshansky, B., Sullivan, R. M., Colucci, W. S., & Sabbah, H. N. (2015). The parasympathetic nervous system and heart failure: Pathophysiology and potential therapeutic modalities for heart failure. In G. Jagadeesh, P. Balakumar, & K. Maung-U (Eds.), Pathophysiology and pharmacotherapy of cardiovascular disease (pp. 107-128). Springer International Publishing.
Oppenheimer, S. M., Gelb, A., Girvin, J. P., & Hachinski, V. C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42(9), 1727-1732. https://doi.org/10.1212/WNL.42.9.1727
Otero, H. J., & Pollock, A. N. (2014). Neurogenic pulmonary edema. Pediatric Emergency Care, 30(11), 845-846. https://doi.org/10.1097/PEC.0000000000000309
Pizzi, C., Manzoli, L., Mancini, S., Bedetti, G., Fontana, F., & Costa, G. M. (2010). Autonomic nervous system, inflammation and preclinical carotid atherosclerosis in depressed subjects with coronary risk factors. Atherosclerosis, 212(1), 292-298. https://doi.org/10.1016/j.atherosclerosis.2010.04.038
Pontet, J., Contreras, P., Curbelo, A., Medina, J., Noveri, S., Bentancourt, S., & Migliaro, E. R. (2003). Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. Journal of Critical Care, 18(3), 156-163. https://doi.org/10.1016/j.jcrc.2003.08.005
Poulat, P., & Couture, R. (1998). Increased pulmonary vascular permeability and oedema induced by intrathecally injected endothelins in rat. European Journal of Pharmacology, 344(2-3), 251-259. https://doi.org/10.1016/S0014-2999(97)01569-0
Powell, N. D., Sloan, E. K., Bailey, M. T., Arevalo, J. M. G., Miller, G. E., Chen, E., Kobor, M. S., Reader, B. F., Sheridan, J. F., & Cole, S. W. (2013). Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. Proceedings of the National Academy of Sciences, 110(41), 16574-16579. https://doi.org/10.1073/pnas.1310655110
Rincon, F., Ghosh, S., Dey, S., Maltenfort, M., Vibbert, M., Urtecho, J., McBride, W., Moussouttas, M., Bell, R., Ratliff, J. K., & Jallo, J. (2012). Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery, 71(4), 795-803. https://doi.org/10.1227/NEU.0b013e3182672ae5
Rosas-Ballina, M., Ochani, M., Parrish, W. R., Ochani, K., Harris, Y. T., Huston, J. M., Chavan, S., & Tracey, K. J. (2008). Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 11008-11013. https://doi.org/10.1073/pnas.0803237105
Rosas-Ballina, M., Olofsson, P. S., Ochani, M., Valdes-Ferrer, S. I., Levine, Y. A., Reardon, C., Tusche, M. W., Pavlov, V. A., Andersson, U., Chavan, S., Mak, T. W., & Tracey, K. J. (2011). Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science, 334(6052), 98-101. https://doi.org/10.1126/science.1209985
Russo, R. N., & O'Flaherty, S. (2010). Bromocriptine for the management of autonomic dysfunction after severe traumatic brain injury. Journal of Paediatrics and Child Health, 36(3), 283-285. https://doi.org/10.1046/j.1440-1754.2000.00485.x
Sacher, D. C., & Yoo, E. J. (2018). Recurrent acute neurogenic pulmonary edema after uncontrolled seizures. Case Reports in Pulmonology, 2018, 1-4. https://doi.org/10.1155/2018/3483282
Sakamoto, H., Nishimura, H., Lmataka, K., Leki, K., Horie, T., & Fujii, J. (1996). Abnormal Q wave, ST-segment elevation, T-wave inversion, and widespread focal myocytolysis associated with subarachnoid hemorrhage. Japanese Circulation Journal, 60(4), 254-257. https://doi.org/10.1253/jcj.60.254
Sander, D., & Klingelhfer, J. (1995). Changes of circadian blood pressure patterns and cardiovascular parameters indicate lateralization of sympathetic activation following hemispheric brain infarction. Journal of Neurology, 242(5), 313-318. https://doi.org/10.1007/BF00878874
Sander, D., & Klingelhofer, J. (1996). Extent of autonomic activation following cerebral ischemia is different in hypertensive and normotensive humans. Archives of Neurology, 53(9), 890-894. https://doi.org/10.1001/archneur.1996.00550090096015
Scheiermann, C., Kunisaki, Y., Lucas, D., Chow, A., Jang, J. E., Zhang, D., Hashimoto, D., Merad, M., & Frenette, P. S. (2012). Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity, 37(2), 290-301. https://doi.org/10.1016/j.immuni.2012.05.021
Schmidt, H. B., Werdan, K., & Müller-Werdan, U. (2001). Autonomic dysfunction in the ICU patient. Current Opinion in Critical Care, 7(5), 314-322. https://doi.org/10.1097/00075198-200110000-00002
Sedý, J., Kuneš, J., & Zicha, J. (2011). Neurogenic pulmonary edema induced by spinal cord injury in spontaneously hypertensive and dahl salt hypertensive rats. Physiological Research, 60(6), 975-979. https://doi.org/10.33549/physiolres.932281
Sedý, J., Zicha, J., Kunes, J., Jendelová, P., & Syková, E. (2008). Mechanisms of neurogenic pulmonary edema development. Physiological Research, 57(4), 499-506. https://doi.org/10.33549/physiolres.931432
Šedy, J. Í., Kuneš, J., & Zicha, J. (2015). Pathogenetic mechanisms of neurogenic pulmonary edema. Journal of Neurotrauma, 32(15), 1135-1145. https://doi.org/10.1089/neu.2014.3609
Simon, R. P. (1993). Neurogenic pulmonary edema. Neurologic Clinics, 11(2), 309-323. https://doi.org/10.1016/S0733-8619(18)30155-5
Solenski, N. J., Haley, E. C., Kassell, N. F., Kongable, G., Germanson, T., Truskowski, L., & Torner, J. C. (1995). Medical complications of aneurysmal subarachnoid hemorrhage: A report of the multicenter, cooperative aneurysm study. Participants of the multicenter cooperative aneurysm study. Critical Care Medicine, 23(6), 1007-1017. https://doi.org/10.1097/00003246-199506000-00004
Song, X. M., Li, J. G., Wang, Y. L., Hu, Z. F., Zhou, Q., Du, Z. H., & Jia, B. H. (2008). The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats. Shock, 30(4), 468-472. https://doi.org/10.1097/SHK.0b013e31816d5e49
Su, X., Lee, J. W., Matthay, Z. A., Mednick, G., Uchida, T., Fang, X., Naveen Gupta, N., & Matthay, M. A. (2007). Activation of the alpha7 nAChR reduces acid-induced acute lung injury in mice and rats. American Journal of Respiratory Cell and Molecular Biology, 37(2), 186-192. https://doi.org/10.1165/rcmb.2006-0240OC
Su, X., Matthay, M. A., & Malik, A. B. (2010). Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing gram-negative sepsis-induced acute lung inflammatory injury. Journal of Immunology, 184(1), 401-410. https://doi.org/10.4049/jimmunol.0901808
Sykora, M., Diedler, J., Poli, S., Rizos, T., Turcani, P., Veltkamp, R., & Steiner, T. (2011). Autonomic shift and increased susceptibility to infections after acute intracerebral hemorrhage. Stroke, 42(5), 1218-1223. https://doi.org/10.1161/STROKEAHA.110.604637
The, F. O., Boeckxstaens, G. E., Snoek, S. A., Cash, J. L., Bennink, R., LaRosa, G. J., van den Wijngaard, R. M., Greaves, D. R., & Jonge, W. J. D. (2007). Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology, 133(4), 1219-1228. https://doi.org/10.1053/j.gastro.2007.07.022
Tracey, K. J. (2002). The inflammatory reflex. Nature, 420(6917), 853-859. https://doi.org/10.1038/nature01321
Tracey, K. J. (2009). Reflex control of immunity. Nature Reviews. Immunology, 9(6), 418-428. https://doi.org/10.1038/nri2566
Tran, T. Y., Dunne, I. E., & German, J. W. (2008). Beta blockers exposure and traumatic brain injury: A literature review. Neurosurgical Focus, 25(4), E8. https://doi.org/10.3171/FOC.2008.25.10.E8
van Westerloo, D., Giebelen, I. A., Florquin, S., Bruno, M. J., LaRosa, G. J., Ulloa, L., Tracey, K. J., & van der Poll, T. (2006). The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology, 130(6), 1822-1830. https://doi.org/10.1053/j.gastro.2006.02.022
Walter, U., Kolbaske, S., Patejdl, R., Steinhagen, V., Abu-Mugheisib, M., Grossmann, A., Zingler, C., & Benecke, R. (2013). Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. European Journal of Neurology, 20(1), 153-159. https://doi.org/10.1111/j.1468-1331.2012.03818.x
Wang, H., Yu, M., Ochani, M., Amella, C. A., Tanovic, M., Susarla, S., Li, J. H., Wang, H., Yang, H., Ulloa, L., Al-Abed, Y., Czura, C. J., & Tracey, K. J. (2003). Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature, 421(6921), 384-388. https://doi.org/10.1038/nature01339
Watanabe, T., Sekiguchi, K., Inoue, A., Taniguchi, Y., & Sato, S. (1992). Clinical evaluation of neurogenic pulmonary edema following acute stage of subarachnoid hemorrhage. No Shinkei Geka, 20(4), 417-422.
Wayne, S. L., O'Donovan, C. A., Mccall, W. V., & Link, K. (1997). Postictal neurogenic pulmonary edema: Experience from an ECT model. Convulsive Therapy, 13(3), 181-184.
Weir, B. K. (1978). Pulmonary edema following fatal aneurysm rupture. Journal of Neurosurgery, 49(4), 502-507. https://doi.org/10.3171/jns.1978.49.4.0502
Williams, D. P., Koenig, J., Carnevali, L., Sgoifo, A., Jarczok, M. N., Sternberg, E. M., & Thayer, J. F. (2019). Heart rate variability and inflammation: A meta-analysis of human studies. Brain, Behavior, and Immunity, 80, 219-226. https://doi.org/10.1016/j.bbi.2019.03.009
Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C., & Bugiardini, R. (2012). Heart rate variability today. Progress in Cardiovascular Diseases, 55(3), 321-331. https://doi.org/10.1016/j.pcad.2012.09.001
Xiong, X. Y., & Yang, Q. W. (2015). Rethinking the roles of inflammation in the intracerebral hemorrhage. Translational Stroke Research, 6(5), 339-341. https://doi.org/10.1007/s12975-015-0402-1
Yang, X., Zhao, C., Gao, Z., & Su, X. (2014). A novel regulator of lung inflammation and immunity: Pulmonary parasympathetic inflammatory reflex. QJM: Monthly Journal of the Association of Physicians, 107(10), 789-792. https://doi.org/10.1093/qjmed/hcu005