Effect of Zolpidem on nocturnal arousals and susceptibility to central sleep apnea.
Ambien
Central sleep apnea
Polysomnography
Sleep-disordered breathing
Zolpidem
Journal
Sleep & breathing = Schlaf & Atmung
ISSN: 1522-1709
Titre abrégé: Sleep Breath
Pays: Germany
ID NLM: 9804161
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
22
11
2021
accepted:
02
03
2022
revised:
07
02
2022
pubmed:
15
3
2022
medline:
10
3
2023
entrez:
14
3
2022
Statut:
ppublish
Résumé
Arousals may contribute to the pathogenesis of sleep-disordered breathing (SDB) and central sleep apnea (CSA). We aimed to determine the effect of the nonbenzodiazepine hypnotic zolpidem on the frequency of respiratory-related arousals and central apnea in patients with moderate-to-severe SDB. We hypothesized that zolpidem decreases the severity of SDB by decreasing the frequency of respiratory-related arousals. Patients with apnea-hypopnea index ≥ 15 events/hour and central apnea-hypopnea index ≥ 5 events/hour underwent a sleep study on zolpidem 5 mg and a sleep study with no medication in a randomized order. The respiratory arousal index was compared between the two studies using a randomized crossover design. Sleep, respiratory, and physiologic parameters, including the CO Eleven participants completed the study. Compared to no treatment, zolpidem reduced the respiratory arousal index (39.7 ± 7.7 vs. 23.3 ± 4.4 events/h, P = 0.031). Zolpidem also lowered the total apnea-hypopnea index (55.6 ± 8.5 vs. 41.3 ± 7.5 events/hour, P = 0.033) but did not affect other clinical and physiologic parameters. Compared to control, zolpidem did not widen CO Nocturnal arousals and overall SDB severity were reduced with a single dose of zolpidem in patients with moderate-to-severe sleep-disordered breathing with increased susceptibility for central apnea. Zolpidem did not widen the CO Clinicaltrials.gov. Sleep and Breathing in the General Population - Chemical Stimuli (NCT04720547).
Identifiants
pubmed: 35286569
doi: 10.1007/s11325-022-02593-3
pii: 10.1007/s11325-022-02593-3
pmc: PMC9470768
mid: NIHMS1795254
doi:
Substances chimiques
Carbon Dioxide
142M471B3J
Zolpidem
7K383OQI23
Banques de données
ClinicalTrials.gov
['NCT04720547']
Types de publication
Journal Article
Randomized Controlled Trial
Langues
eng
Sous-ensembles de citation
IM
Pagination
173-180Subventions
Organisme : CSRD VA
ID : I01 CX001944
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL130552
Pays : United States
Organisme : U.S. Department of Veterans Affairs
ID : CX001944-01
Organisme : NIH HHS
ID : R01HL130552
Pays : United States
Organisme : NIH HHS
ID : R01HL130552
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Tietjens JR, Claman D, Kezirian EJ et al (2019) Obstructive sleep apnea in cardiovascular disease: a review of the literature and proposed multidisciplinary clinical management strategy. J Am Heart Assoc 8(1):e010440. https://doi.org/10.1161/JAHA.118.010440
doi: 10.1161/JAHA.118.010440
pubmed: 30590966
Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S (2017) INCOSACT Initiative (International Collaboration of Sleep Apnea Cardiovascular Trialists) Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation 136(19):1840–1850. https://doi.org/10.1161/CIRCULATIONAHA.117.029400
doi: 10.1161/CIRCULATIONAHA.117.029400
pubmed: 29109195
pmcid: 5689452
Aurora RN, Chowdhuri S, Ramar K, et al. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep. 2012;35(1):17–40. Published 2012 Jan 1. https://doi.org/10.5665/sleep.1580
Bradley TD, Logan AG, Kimoff RJ et al (2005) Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med 353(19):2025–2033. https://doi.org/10.1056/NEJMoa051001
doi: 10.1056/NEJMoa051001
pubmed: 16282177
Bordier P, Lataste A, Hofmann P, Robert F, Bourenane G (2016) Nocturnal oxygen therapy in patients with chronic heart failure and sleep apnea: a systematic review. Sleep Med 17:149–157. https://doi.org/10.1016/j.sleep.2015.10.017
doi: 10.1016/j.sleep.2015.10.017
pubmed: 26847991
Quadri S, Drake C, Hudgel DW (2009) Improvement of idiopathic central sleep apnea with Zolpidem. J Clin Sleep Med 5(2):122–129
doi: 10.5664/jcsm.27439
pubmed: 19968044
pmcid: 2670330
Eckert DJ, Jordan AS, Merchia P, Malhotra A (2007) Central sleep apnea: pathophysiology and treatment. Chest 131(2):595–607. https://doi.org/10.1378/chest.06.2287
doi: 10.1378/chest.06.2287
pubmed: 17296668
Bonnet MH, Dexter JR, Arand DL (1990) The effect of triazolam on arousal and respiration in central sleep apnea patients. Sleep 13(1):31–41. https://doi.org/10.1093/sleep/13.1.31
doi: 10.1093/sleep/13.1.31
pubmed: 2406849
Messineo L, Eckert DJ, Lim R et al (2020) Zolpidem increases sleep efficiency and the respiratory arousal threshold without changing sleep apnoea severity and pharyngeal muscle activity. J Physiol 598(20):4681–4692. https://doi.org/10.1113/JP280173
doi: 10.1113/JP280173
pubmed: 32864734
Carberry JC, Fisher LP, Grunstein RR, et al. Role of common hypnotics on the phenotypic causes of obstructive sleep apnoea: paradoxical effects of Zolpidem. Eur Respir J. 2017;50(6):1701344. Published 2017 Dec 28. https://doi.org/10.1183/13993003.01344-2017
Smith PR, Sheikh KL, Costan-Toth C, et al. Eszopiclone and Zolpidem do not affect the prevalence of the low arousal threshold phenotype. J Clin Sleep Med. 2017;13(1):115–119. Published 2017 Jan 15. https://doi.org/10.5664/jcsm.6402 .
Carberry JC, Grunstein RR, Eckert DJ (2019) The effects of Zolpidem in obstructive sleep apnea — an open-label pilot study. J Sleep Res 28(6):e12853. https://doi.org/10.1111/jsr.12853
doi: 10.1111/jsr.12853
pubmed: 30968498
Salloum A, Rowley JA, Mateika JH, Chowdhuri S, Omran Q, Badr MS (2010) Increased propensity for central apnea in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure. Am J Respir Crit Care Med 181:189–193. https://doi.org/10.1164/rccm.200810-1658OC
doi: 10.1164/rccm.200810-1658OC
pubmed: 19762565
FDA (2018). Questions and answers: risk of next-morning impairment after use of insomnia drugs; FDA requires lower recommended doses for certain drugs containing Zolpidem (Ambien, Ambien CR, Edluar, and Zolpimist). https://www.springer.com/journal/11325/submission-guidelines . Accessed 15 November 2021
Berry RB, Brooks R, Gamaldo C, et al. AASM scoring manual updates for 2017 (Version 2.4). J Clin Sleep Med. 2017;13(5):665–666. Published 2017 May 15. https://doi.org/10.5664/jcsm.6576
Ginter G, Sankari A, Eshraghi M et al (2020) Effect of acetazolamide on susceptibility to central sleep apnea in chronic spinal cord injury. J Appl Physiol (1985) 128(4):960–966. https://doi.org/10.1152/JApplPhysiol.00532.2019
doi: 10.1152/JApplPhysiol.00532.2019
pubmed: 32078469
Edwards BA, Eckert DJ, McSharry DG et al (2014) Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am J Respir Crit Care Med 190(11):1293–1300. https://doi.org/10.1164/rccm.201404-0718OC
doi: 10.1164/rccm.201404-0718OC
pubmed: 25321848
pmcid: 4315811
Rizwan A, Sankari A, Bascom AT, Vaughan S, Badr MS (2018) Nocturnal swallowing and arousal threshold in individuals with chronic spinal cord injury. J Appl Physiol (1985) 125(2):445–452. https://doi.org/10.1152/japplphysiol.00641.2017
doi: 10.1152/japplphysiol.00641.2017
pubmed: 29672224
Bradley TD, Floras JS (2003) Sleep apnea and heart failure: Part II: central sleep apnea. Circulation 107(13):1822–1826. https://doi.org/10.1161/01.CIR.0000061758.05044.64
doi: 10.1161/01.CIR.0000061758.05044.64
pubmed: 12682029
Badr MS, Morgan BJ, Finn L et al (1997) Ventilatory response to induced auditory arousals during NREM sleep. Sleep 20(9):707–714. https://doi.org/10.1093/sleep/20.9.707
doi: 10.1093/sleep/20.9.707
pubmed: 9406322
Badr MS, Skatrud JB, Dempsey JA (1992) Determinants of poststimulus potentiation in humans during NREM sleep. J Appl Physiol (1985) 73(5):1958–1971. https://doi.org/10.1152/jappl.1992.73.5.1958
doi: 10.1152/jappl.1992.73.5.1958
pubmed: 1474073
Sankri-Tarbichi AG, Rowley JA, Badr MS (2009) Expiratory pharyngeal narrowing during central hypocapnic hypopnea. Am J Respir Crit Care Med 179(4):313–319. https://doi.org/10.1164/rccm.200805-741OC
doi: 10.1164/rccm.200805-741OC
pubmed: 19201929
Sateia MJ (2014) International classification of sleep disorders-third edition: highlights and modifications. Chest 146:1387–1394. https://doi.org/10.1378/chest.14-0970
doi: 10.1378/chest.14-0970
pubmed: 25367475
Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A (2013) Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188(8):996–1004. https://doi.org/10.1164/rccm.201303-0448OC
doi: 10.1164/rccm.201303-0448OC
pubmed: 23721582
pmcid: 3826282