Quantitative Phosphoproteomics to Study cAMP Signaling.
Cell signaling
Compartmentalization
Mass spectrometry
PKA
Phosphodiesterases
Phosphoproteome
Phosphorylation
Quantitative proteomics
cAMP
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
14
3
2022
pubmed:
15
3
2022
medline:
17
3
2022
Statut:
ppublish
Résumé
Cyclic adenosine monophosphate (cAMP) signaling activates multiple downstream cellular targets in response to different stimuli. Specific phosphorylation of key target proteins via activation of the cAMP effector protein kinase A (PKA) is achieved via signal compartmentalization. Termination of the cAMP signal is mediated by phosphodiesterases (PDEs), a diverse group of enzymes comprising several families that localize to distinct cellular compartments. By studying the effects of inhibiting individual PDE families on the phosphorylation of specific targets it is possible to gain information on the subcellular spatial organization of this signaling pathway.We describe a phosphoproteomic approach that can detect PDE family-specific phosphorylation changes in cardiac myocytes against a high phosphorylation background. The method combines dimethyl labeling and titanium dioxide-mediated phosphopeptide enrichment, followed by tandem mass spectrometry.
Identifiants
pubmed: 35286683
doi: 10.1007/978-1-0716-2245-2_18
doi:
Substances chimiques
Cyclic AMP
E0399OZS9N
Cyclic AMP-Dependent Protein Kinases
EC 2.7.11.11
Phosphoric Diester Hydrolases
EC 3.1.4.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
281-296Subventions
Organisme : British Heart Foundation
ID : RG/17/6/32944
Pays : United Kingdom
Organisme : British Heart Foundation
ID : PG/10/75/28537
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RE/13/1/30181
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Zaccolo M, Zerio A, Lobo MJ (2021) Subcellular organization of the cAMP signaling pathway. Pharmacol Rev 73:278–309. https://doi.org/10.1124/pharmrev.120.000086
doi: 10.1124/pharmrev.120.000086
pubmed: 33334857
pmcid: 7770493
Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715. https://doi.org/10.1126/science.1069982
doi: 10.1126/science.1069982
pubmed: 11872839
pmcid: 11872839
Surdo NC, Berrera M, Koschinski A et al (2017) FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat Commun 8:15031. https://doi.org/10.1038/ncomms15031
doi: 10.1038/ncomms15031
pubmed: 28425435
pmcid: 5411486
Zaccolo M (2021) cAMP buffering via liquid-liquid phase separation. Function (Oxford) 2:zqaa048. https://doi.org/10.1093/function/zqaa048
doi: 10.1093/function/zqaa048
Zaccolo M (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 158:50–60. https://doi.org/10.1111/j.1476-5381.2009.00185.x
doi: 10.1111/j.1476-5381.2009.00185.x
pubmed: 19371331
pmcid: 2795260
Taylor SS, Kim C, Cheng CY et al (2008) Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784:16–26. https://doi.org/10.1016/j.bbapap.2007.10.002
doi: 10.1016/j.bbapap.2007.10.002
pubmed: 17996741
Reiken S, Lacampagne A, Zhou H et al (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 160:919–928. https://doi.org/10.1083/jcb.200211012
doi: 10.1083/jcb.200211012
pubmed: 12629052
pmcid: 2173774
Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924. https://doi.org/10.1152/physrev.2000.80.2.853
doi: 10.1152/physrev.2000.80.2.853
pubmed: 10747208
Kirchberger MA, Tada M, Repke DI, Katz AM (1972) Cyclic adenosine 3’,5’-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol 4:673–680. https://doi.org/10.1016/0022-2828(72)90120-4
doi: 10.1016/0022-2828(72)90120-4
pubmed: 4347149
Kho C, Lee A, Hajjar RJ (2012) Altered sarcoplasmic reticulum calcium cycling--targets for heart failure therapy. Nat Rev Cardiol 9:717–733. https://doi.org/10.1038/nrcardio.2012.145
doi: 10.1038/nrcardio.2012.145
pubmed: 23090087
pmcid: 3651893
Cleland JG, Swedberg K, Poole-Wilson PA (1998) Successes and failures of current treatment of heart failure. Lancet 352(Suppl 1):SI19–SI28. https://doi.org/10.1016/s0140-6736(98)90015-0
doi: 10.1016/s0140-6736(98)90015-0
pubmed: 9736476
Maurice DH, Ke H, Ahmad F et al (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314. https://doi.org/10.1038/nrd4228
doi: 10.1038/nrd4228
pubmed: 24687066
pmcid: 4155750
Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511. https://doi.org/10.1146/annurev.biochem.76.060305.150444
doi: 10.1146/annurev.biochem.76.060305.150444
pubmed: 17376027
Zaccolo M (2006) Phosphodiesterases and compartmentalized cAMP signalling in the heart. Eur J Cell Biol 85:693–697. https://doi.org/10.1016/j.ejcb.2006.01.002
doi: 10.1016/j.ejcb.2006.01.002
pubmed: 16466668
Schleicher K, Zaccolo M (2020) Defining a cellular map of cAMP nanodomains. Mol Pharmacol 99:mol.119.118869. https://doi.org/10.1124/mol.119.118869
doi: 10.1124/mol.119.118869
Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271:16526–16534. https://doi.org/10.1074/jbc.271.28.16526
doi: 10.1074/jbc.271.28.16526
pubmed: 8663227
Mongillo M, Tocchetti CG, Terrin A et al (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234. https://doi.org/10.1161/01.RES.0000200178.34179.93
doi: 10.1161/01.RES.0000200178.34179.93
pubmed: 16357307
Lomas O, Brescia M, Carnicer R et al (2015) Adenoviral transduction of FRET-based biosensors for cAMP in primary adult mouse cardiomyocytes. Methods Mol Biol 1294:103–115. https://doi.org/10.1007/978-1-4939-2537-7_8
doi: 10.1007/978-1-4939-2537-7_8
pubmed: 25783880
Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494. https://doi.org/10.1038/nprot.2009.21
doi: 10.1038/nprot.2009.21
pubmed: 19300442
Zhou H, Ye M, Dong J et al (2013) Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc 8:461–480. https://doi.org/10.1038/nprot.2013.010
doi: 10.1038/nprot.2013.010
pubmed: 23391890
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511
doi: 10.1038/nbt.1511
pubmed: 19029910
Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. https://doi.org/10.1021/pr101065j
doi: 10.1021/pr101065j
pubmed: 21254760
Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901
doi: 10.1038/nmeth.3901
pubmed: 27348712
van de Meent MHM, de Jong GJ (2007) Improvement of the liquid-chromatographic analysis of protein tryptic digests by the use of long-capillary monolithic columns with UV and MS detection. Anal Bioanal Chem 388:195–200. https://doi.org/10.1007/s00216-007-1215-1
doi: 10.1007/s00216-007-1215-1
pubmed: 17393153
pmcid: 1914286
Unwin RD, Griffiths JR, Leverentz MK et al (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144. https://doi.org/10.1074/mcp.M500113-MCP200
doi: 10.1074/mcp.M500113-MCP200
pubmed: 15923565
Wu WW, Wang G, Insel PA et al (2011) Identification of proteins and phosphoproteins using pulsed Q collision induced dissociation (PQD). J Am Soc Mass Spectrom 22:1753–1762. https://doi.org/10.1007/s13361-011-0197-6
doi: 10.1007/s13361-011-0197-6
pubmed: 21952889
pmcid: 3183836
Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5:959–964. https://doi.org/10.1038/nmeth.1260
doi: 10.1038/nmeth.1260
pubmed: 18931669
pmcid: 2597439