Quantitative Phosphoproteomics to Study cAMP Signaling.

Cell signaling Compartmentalization Mass spectrometry PKA Phosphodiesterases Phosphoproteome Phosphorylation Quantitative proteomics cAMP

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 14 3 2022
pubmed: 15 3 2022
medline: 17 3 2022
Statut: ppublish

Résumé

Cyclic adenosine monophosphate (cAMP) signaling activates multiple downstream cellular targets in response to different stimuli. Specific phosphorylation of key target proteins via activation of the cAMP effector protein kinase A (PKA) is achieved via signal compartmentalization. Termination of the cAMP signal is mediated by phosphodiesterases (PDEs), a diverse group of enzymes comprising several families that localize to distinct cellular compartments. By studying the effects of inhibiting individual PDE families on the phosphorylation of specific targets it is possible to gain information on the subcellular spatial organization of this signaling pathway.We describe a phosphoproteomic approach that can detect PDE family-specific phosphorylation changes in cardiac myocytes against a high phosphorylation background. The method combines dimethyl labeling and titanium dioxide-mediated phosphopeptide enrichment, followed by tandem mass spectrometry.

Identifiants

pubmed: 35286683
doi: 10.1007/978-1-0716-2245-2_18
doi:

Substances chimiques

Cyclic AMP E0399OZS9N
Cyclic AMP-Dependent Protein Kinases EC 2.7.11.11
Phosphoric Diester Hydrolases EC 3.1.4.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

281-296

Subventions

Organisme : British Heart Foundation
ID : RG/17/6/32944
Pays : United Kingdom
Organisme : British Heart Foundation
ID : PG/10/75/28537
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RE/13/1/30181
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Zaccolo M, Zerio A, Lobo MJ (2021) Subcellular organization of the cAMP signaling pathway. Pharmacol Rev 73:278–309. https://doi.org/10.1124/pharmrev.120.000086
doi: 10.1124/pharmrev.120.000086 pubmed: 33334857 pmcid: 7770493
Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715. https://doi.org/10.1126/science.1069982
doi: 10.1126/science.1069982 pubmed: 11872839 pmcid: 11872839
Surdo NC, Berrera M, Koschinski A et al (2017) FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat Commun 8:15031. https://doi.org/10.1038/ncomms15031
doi: 10.1038/ncomms15031 pubmed: 28425435 pmcid: 5411486
Zaccolo M (2021) cAMP buffering via liquid-liquid phase separation. Function (Oxford) 2:zqaa048. https://doi.org/10.1093/function/zqaa048
doi: 10.1093/function/zqaa048
Zaccolo M (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 158:50–60. https://doi.org/10.1111/j.1476-5381.2009.00185.x
doi: 10.1111/j.1476-5381.2009.00185.x pubmed: 19371331 pmcid: 2795260
Taylor SS, Kim C, Cheng CY et al (2008) Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784:16–26. https://doi.org/10.1016/j.bbapap.2007.10.002
doi: 10.1016/j.bbapap.2007.10.002 pubmed: 17996741
Reiken S, Lacampagne A, Zhou H et al (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 160:919–928. https://doi.org/10.1083/jcb.200211012
doi: 10.1083/jcb.200211012 pubmed: 12629052 pmcid: 2173774
Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924. https://doi.org/10.1152/physrev.2000.80.2.853
doi: 10.1152/physrev.2000.80.2.853 pubmed: 10747208
Kirchberger MA, Tada M, Repke DI, Katz AM (1972) Cyclic adenosine 3’,5’-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol 4:673–680. https://doi.org/10.1016/0022-2828(72)90120-4
doi: 10.1016/0022-2828(72)90120-4 pubmed: 4347149
Kho C, Lee A, Hajjar RJ (2012) Altered sarcoplasmic reticulum calcium cycling--targets for heart failure therapy. Nat Rev Cardiol 9:717–733. https://doi.org/10.1038/nrcardio.2012.145
doi: 10.1038/nrcardio.2012.145 pubmed: 23090087 pmcid: 3651893
Cleland JG, Swedberg K, Poole-Wilson PA (1998) Successes and failures of current treatment of heart failure. Lancet 352(Suppl 1):SI19–SI28. https://doi.org/10.1016/s0140-6736(98)90015-0
doi: 10.1016/s0140-6736(98)90015-0 pubmed: 9736476
Maurice DH, Ke H, Ahmad F et al (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314. https://doi.org/10.1038/nrd4228
doi: 10.1038/nrd4228 pubmed: 24687066 pmcid: 4155750
Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511. https://doi.org/10.1146/annurev.biochem.76.060305.150444
doi: 10.1146/annurev.biochem.76.060305.150444 pubmed: 17376027
Zaccolo M (2006) Phosphodiesterases and compartmentalized cAMP signalling in the heart. Eur J Cell Biol 85:693–697. https://doi.org/10.1016/j.ejcb.2006.01.002
doi: 10.1016/j.ejcb.2006.01.002 pubmed: 16466668
Schleicher K, Zaccolo M (2020) Defining a cellular map of cAMP nanodomains. Mol Pharmacol 99:mol.119.118869. https://doi.org/10.1124/mol.119.118869
doi: 10.1124/mol.119.118869
Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271:16526–16534. https://doi.org/10.1074/jbc.271.28.16526
doi: 10.1074/jbc.271.28.16526 pubmed: 8663227
Mongillo M, Tocchetti CG, Terrin A et al (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234. https://doi.org/10.1161/01.RES.0000200178.34179.93
doi: 10.1161/01.RES.0000200178.34179.93 pubmed: 16357307
Lomas O, Brescia M, Carnicer R et al (2015) Adenoviral transduction of FRET-based biosensors for cAMP in primary adult mouse cardiomyocytes. Methods Mol Biol 1294:103–115. https://doi.org/10.1007/978-1-4939-2537-7_8
doi: 10.1007/978-1-4939-2537-7_8 pubmed: 25783880
Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494. https://doi.org/10.1038/nprot.2009.21
doi: 10.1038/nprot.2009.21 pubmed: 19300442
Zhou H, Ye M, Dong J et al (2013) Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc 8:461–480. https://doi.org/10.1038/nprot.2013.010
doi: 10.1038/nprot.2013.010 pubmed: 23391890
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511
doi: 10.1038/nbt.1511 pubmed: 19029910
Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. https://doi.org/10.1021/pr101065j
doi: 10.1021/pr101065j pubmed: 21254760
Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901
doi: 10.1038/nmeth.3901 pubmed: 27348712
van de Meent MHM, de Jong GJ (2007) Improvement of the liquid-chromatographic analysis of protein tryptic digests by the use of long-capillary monolithic columns with UV and MS detection. Anal Bioanal Chem 388:195–200. https://doi.org/10.1007/s00216-007-1215-1
doi: 10.1007/s00216-007-1215-1 pubmed: 17393153 pmcid: 1914286
Unwin RD, Griffiths JR, Leverentz MK et al (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144. https://doi.org/10.1074/mcp.M500113-MCP200
doi: 10.1074/mcp.M500113-MCP200 pubmed: 15923565
Wu WW, Wang G, Insel PA et al (2011) Identification of proteins and phosphoproteins using pulsed Q collision induced dissociation (PQD). J Am Soc Mass Spectrom 22:1753–1762. https://doi.org/10.1007/s13361-011-0197-6
doi: 10.1007/s13361-011-0197-6 pubmed: 21952889 pmcid: 3183836
Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5:959–964. https://doi.org/10.1038/nmeth.1260
doi: 10.1038/nmeth.1260 pubmed: 18931669 pmcid: 2597439

Auteurs

Katharina Schleicher (K)

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. kschleicher.mail@gmail.com.

Svenja Hester (S)

Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK.
Department of Biochemistry, University of Oxford, Oxford, UK.

Monika Stegmann (M)

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.

Manuela Zaccolo (M)

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH