Growth and Biochemical Responses of Green and Red Perilla Supplementally Subjected to UV-A and Deep-blue LED Lights.


Journal

Photochemistry and photobiology
ISSN: 1751-1097
Titre abrégé: Photochem Photobiol
Pays: United States
ID NLM: 0376425

Informations de publication

Date de publication:
11 2022
Historique:
received: 02 12 2021
accepted: 10 03 2022
pubmed: 15 3 2022
medline: 15 11 2022
entrez: 14 3 2022
Statut: ppublish

Résumé

This study investigated the effects of UV-A and UV-A-closed visible light (deep-blue [DB]) on the growth and bioactive compound accumulation of green and red perilla. Four-week-old seedlings were cultivated in an environment control room under visible light with red, blue and white LEDs for 4 weeks and then were continuously grown under supplemental UV-A (365 nm and 385 nm) and DB (415 nm and 430 nm) lights for 7 days. UV-A and DB treatments did not enhance the growth characteristics of green perilla compared with the control; while these treatments enhanced the growth parameters of red perilla, and the values were highest in DB 415 nm. The photosynthesis rate of both cultivars showed similar trends as the growth results of each cultivar. The electron transport rate and maximum quantum yield of both cultivars were reduced under UV-A 365 nm, while these values were maintained in DB treatments. In both cultivars, total phenolic, antioxidant capacity, rosmarinic and caffeic acids and perillaldehyde levels were enhanced in DB treatments, whereas UV-A 365 nm and DB 415 nm increased the total anthocyanin content. Overall, supplemental DB 415 nm and 430 nm was suitable for improving the growth and biochemical accumulation of both perilla cultivars.

Identifiants

pubmed: 35286711
doi: 10.1111/php.13614
doi:

Substances chimiques

Phenols 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1332-1342

Informations de copyright

© 2022 American Society for Photobiology.

Références

Neugart, S. and M. Schreiner (2018) UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 234, 370-381.
Wargent, J. J. and B. R. Jordan (2013) From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytol. 197(4), 1058-1076.
Verdaguer, D., M. A. Jansen, L. Llorens, L. O. Morales and S. Neugart (2017) UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 255, 72-81.
Brazaityte, A., A. Virsile, J. Jankauskiene, S. Sakalauskiene, G. Samuoliene, R. Sirtautas, A. Novickovas, L. Dabasinskas, J. Miliauskiene and V. Vastakaite (2015) Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. Int. Agrophys. 29(1), 13-22.
Lee, M. J., J. E. Son and M. M. Oh (2014) Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A,-B, or-C lamp. J. Sci. Food Agric. 94(2), 197-204.
Lee, J.-H., M.-M. Oh and K.-H. Son (2019) Short-term ultraviolet (UV)-A light-emitting diode (LED) radiation improves biomass and bioactive compounds of kale. Front. Plant Sci. 10, 1042.
Lin, C. (2002) Blue light receptors and signal transduction. Plant Cell 14(Suppl 1), S207-S225.
Morales, L. O., M. Brosché, J. Vainonen, G. I. Jenkins, J. J. Wargent, N. Sipari, Å. Strid, A. V. Lindfors, R. Tegelberg and P. J. Aphalo (2013) Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation. Plant Physiol. 161(2), 744-759.
Nitta, M., J. K. Lee and O. Ohnishi (2003) Asian Perilla crops and their weedy forms: Their cultivation, utilization and genetic relationships. Econ. Bot. 57(2), 245-253.
Yoshida, K., T. Kondo, K. Kameda and T. Goto (1990) Structure of anthocyanins isolated from purple leaves of Perilla ocimoides L. var. crispa Benth and their isomerization by irradiation of light. Agric. Biol. Chem. 54(7), 1745-1751.
Kosuna, K. and M. Haga (1997) The development and application of perilla extract as an anti-allergic substance. In The Genus Perilla (Edited by H. Yu, K. Kosuna and M. P. Haga), pp. 83-93. Harwood Academic Publisher, Dallas, TX.
Asif, M. (2012) Phytochemical study of polyphenols in Perilla Frutescens as an antioxidant. Avicenna J. Phytomed. 2(4), 169-178.
Akula, R. and G. A. Ravishankar (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 6(11), 1720-1731.
Lee, J. S., C. Ae, Y. Lee, H. Kim and J. Y. Song (2014) Shorter wavelength blue light promotes growth of green perilla (Perilla frutescens). Int. J. Agric. Biol. 16(6), 1177-1182.
Nishimura, T., K. Ohyama, E. Goto, N. Inagaki and T. Morota (2008) Ultraviolet-b radiation suppressed the growth and anthocyanin production of perilla plants grown under controlled environments with artificial light. Acta Hortic. 797, 425-429. International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions.
Nguyen, T. K. L. and M. M. Oh (2021) Physiological and biochemical responses of green and red perilla to LED-based light. J. Sci. Food Agric. 101(1), 240-252.
Iwai, M., M. Ohta, H. Tsuchiya and T. Suzuki (2010) Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. J. Funct. Foods 2(1), 66-70.
Nguyen, T. K. L., M.-S. Yeom and M.-M. Oh (2021) Effect of a newly-developed nutrient solution and electrical conductivity on growth and bioactive compounds in Perilla frutescens var. crispa. Agronomy 11(5), 932.
Wrolstad, R. E., R. W. Durst and J. Lee (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 16(9), 423-428.
Li, Y., Y. Zheng, D. Zheng, Y. Zhang, S. Song, W. Su and H. Liu (2020) Effects of supplementary blue and UV-A LED lights on morphology and phytochemicals of Brassicaceae baby-leaves. Molecules 25(23), 5678.
Brazaitytė, A., A. Viršilė, G. Samuolienė, V. Vaštakaitė-Kairienė, J. Jankauskienė, J. Miliauskienė, A. Novičkovas and P. Duchovskis (2019) Response of mustard microgreens to different wavelengths and durations of UV-A LEDs. Front. Plant Sci. 10, 1153.
Lee, M., C. Rivard, E. Pliakoni, W. Wang and C. Rajashekar (2021) Supplemental UV-A and UV-B affect the nutritional quality of lettuce and tomato: health-promoting phytochemicals and essential nutrients. Am. J. Plant Sci. 12(1), 104-126.
Baroniya, S. S., S. Kataria, G. P. Pandey and K. N. Guruprasad (2014) Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation. Crop J. 2(6), 388-397.
Franklin, K. A. and G. C. Whitelam (2005) Phytochromes and shade-avoidance responses in plants. Ann. Bot. 96(2), 169-175.
Eisinger, W., T. E. Swartz, R. A. Bogomolni and L. Taiz (2000) The ultraviolet action spectrum for stomatal opening in broad bean. Plant Physiol. 122(1), 99-106.
Vass, I., E. Turcsányi, E. Touloupakis, D. Ghanotakis and V. Petrouleas (2002) The mechanism of UV-A radiation-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Biochemistry 41(32), 10200-10208.
Takahashi, S. and M. R. Badger (2011) Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 16(1), 53-60.
Coley, P. D. and T. A. Kursor (1996) Anti-herbivore defenses of young tropical leaves: physiological constraints and ecological trade-offs. In Tropical forest plant ecophysiology (Edited by S. S. Mulkey, R. L. Chazdon and A. P. Smith), pp. 305-336. Springer.
Burger, J. and G. E. Edwards (1996) Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf coleus varieties. Plant Cell Physiol. 37(3), 395-399.
Hernández, R. and C. Kubota (2016) Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 121, 66-74.
Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara and K. Kurata (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci. Plant Nutr. 53(4), 459-465.
O'Carrigan, A., M. Babla, F. Wang, X. Liu, M. Mak, R. Thomas, B. Bellotti and Z.-H. Chen (2014) Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic light treatments. Plant Physiol. Biochem. 82, 105-115.
Tsunoyama, Y., Y. Ishizaki, K. Morikawa, M. Kobori, Y. Nakahira, G. Takeba, Y. Toyoshima and T. Shiina (2004) Blue light-induced transcription of plastid-encoded psbD gene is mediated by a nuclear-encoded transcription initiation factor, AtSig5. Proc. Natl Acad. Sci. U. S. A. 101(9), 3304-3309.
Tsormpatsidis, E., R. Henbest, F. J. Davis, N. Battey, P. Hadley and A. Wagstaffe (2008) UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ. Exp. Bot. 63(1-3), 232-239.
Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Viršilė, J. Sakalauskaitė, S. Sakalauskienė and P. Duchovskis (2013) LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric. 93(13), 3286-3291.
Li, Q. and C. Kubota (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67(1), 59-64.
Huché-Thélier, L., L. Crespel, J. Le Gourrierec, P. Morel, S. Sakr and N. Leduc (2016) Light signaling and plant responses to blue and UV radiations-Perspectives for applications in horticulture. Environ. Exp. Bot. 121, 22-38.
Mao, P., F. Duan, Y. Zheng and Q. Yang (2021) Blue and UV-A light wavelengths positively affected accumulation profiles of healthy compounds in pak-choi. J. Sci. Food Agric. 101(4), 1676-1684.
Taulavuori, K., A. Pyysalo, E. Taulavuori and R. Julkunen-Tiitto (2018) Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environ. Exp. Bot. 150, 183-187.
Siipola, S. M., T. Kotilainen, N. Sipari, L. O. Morales, A. V. Lindfors, T. M. Robson and P. J. Aphalo (2015) Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. Plant Cell Environ. 38(5), 941-952.
Amaki, W., N. Yamazaki, M. Ichimura and H. Watanabe (2009) Effects of light quality on the growth and essential oil content in sweet basil. Acta Hortic. 907(907), 91-94.

Auteurs

Loan T K Nguyen (LTK)

Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, Korea.
Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, Korea.

Myung-Min Oh (MM)

Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, Korea.
Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, Korea.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Sorghum Antioxidants Phosphorus Fertilizers Flavonoids

Classifications MeSH