Metabolism of a hybrid algal galactan by members of the human gut microbiome.
Journal
Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
28
05
2021
accepted:
27
01
2022
pubmed:
16
3
2022
medline:
3
5
2022
entrez:
15
3
2022
Statut:
ppublish
Résumé
Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroides uniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients.
Identifiants
pubmed: 35289327
doi: 10.1038/s41589-022-00983-y
pii: 10.1038/s41589-022-00983-y
doi:
Substances chimiques
Galactans
0
Polysaccharides
0
Sepharose
9012-36-6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
501-510Subventions
Organisme : CIHR
Pays : Canada
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Ndeh, D. et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544, 65–70 (2017).
pubmed: 28329766
pmcid: 5388186
doi: 10.1038/nature21725
Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).
pubmed: 25567280
pmcid: 4978465
doi: 10.1038/nature13995
Kloareg, B. & Quatrano, R. S. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Annu. Rev. 26, 259–315 (1988).
Hehemann, J.-H., Boraston, A. B. & Czjzek, M. A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr. Opin. Struct. Biol. 28, 77–86 (2014).
pubmed: 25136767
doi: 10.1016/j.sbi.2014.07.009
Ficko-Blean, E. et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat. Commun. 8, 1685 (2017).
pubmed: 29162826
pmcid: 5698469
doi: 10.1038/s41467-017-01832-6
Hettle, A. G. et al. Insights into the κ/ι-carrageenan metabolism pathway of some marine Pseudoalteromonas species. Commun. Biol. 2, 474 (2019).
pubmed: 31886414
pmcid: 6923384
doi: 10.1038/s42003-019-0721-y
Reisky, L. et al. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat. Chem. Biol. 15, 803–812 (2019).
pubmed: 31285597
doi: 10.1038/s41589-019-0311-9
Wells, M. L. et al. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29, 949–982 (2017).
pubmed: 28458464
doi: 10.1007/s10811-016-0974-5
Hehemann, J.-H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).
pubmed: 20376150
doi: 10.1038/nature08937
Pluvinage, B. et al. Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat. Commun. 9, 1043 (2018).
pubmed: 29535379
pmcid: 5849685
doi: 10.1038/s41467-018-03366-x
Mathieu, S. et al. Ancient acquisition of ‘alginate utilization loci’ by human gut microbiota. Sci. Rep. 8, 8075 (2018).
pubmed: 29795267
pmcid: 5966431
doi: 10.1038/s41598-018-26104-1
Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: the food connection. Front. Microbiol. https://doi.org/10.3389/fmicb.2011.00093 (2011).
Pudlo, N. A. et al. Extensive transfer of genes for edible seaweed digestion from marine to human gut bacteria. Preprint at bioRxiv https://doi.org/10.1101/2020.06.09.142968 (2020).
Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).
pubmed: 29743671
pmcid: 6126907
doi: 10.1038/s41586-018-0092-4
Kearney, S. M., Gibbons, S. M., Erdman, S. E. & Alm, E. J. Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal. Cell Rep. 24, 1842–1851 (2018).
pubmed: 30110640
pmcid: 6724203
doi: 10.1016/j.celrep.2018.07.032
Rinaudo, M. in Comprehensive Glycoscience 691–735 (Elsevier, 2007).
Rees, D. Enzymic synthesis of 3:6-anhydro-L-galactose within porphyran from L-galactose 6-sulphate units. Biochem. J. 81, 347–352 (1961).
pubmed: 16748934
pmcid: 1243346
doi: 10.1042/bj0810347
Rees, D. Enzymic desulphation of porphyran. Biochem. J. 80, 449–453 (1961).
pubmed: 13740282
pmcid: 1243251
doi: 10.1042/bj0800449
Correc, G., Hehemann, J.-H., Czjzek, M. & Helbert, W. Structural analysis of the degradation products of porphyran digested by Zobellia galactanivorans β-porphyranase A. Carbohydr. Polym. 83, 277–283 (2011).
doi: 10.1016/j.carbpol.2010.07.060
Hehemann, J.-H., Kelly, A. G., Pudlo, N. A., Martens, E. C. & Boraston, A. B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl Acad. Sci. USA 109, 19786–19791 (2012).
pubmed: 23150581
pmcid: 3511707
doi: 10.1073/pnas.1211002109
Hehemann, J. H., Smyth, L., Yadav, A., Vocadlo, D. J. & Boraston, A. B. Analysis of a keystone enzyme in agar hydrolysis provides insight into the degradation of a polysaccharide from red seaweeds. J. Biol. Chem. 287, 13985–13995 (2012).
pubmed: 22393053
pmcid: 3340130
doi: 10.1074/jbc.M112.345645
Hobbs, M. E., Williams, H. J., Hillerich, B., Almo, S. C. & Raushel, F. M. l-Galactose metabolism in Bacteroides vulgatus from the human gut microbiota. Biochemistry 53, 4661–4670 (2014).
pubmed: 24963813
doi: 10.1021/bi500656m
Marquardt, T. et al. High-resolution crystal structure of AKR11C1 from Bacillus halodurans: an NADPH-dependent 4-hydroxy-2,3-trans-nonenal reductase. J. Mol. Biol. 354, 304–316 (2005).
pubmed: 16242712
doi: 10.1016/j.jmb.2005.09.067
Barbeyron, T. et al. Matching the diversity of sulfated biomolecules: creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE 11, e0164846 (2016).
pubmed: 27749924
pmcid: 5066984
doi: 10.1371/journal.pone.0164846
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).
pubmed: 24270786
doi: 10.1093/nar/gkt1178
Bond, C. S. et al. Structure of a human lysosomal sulfatase. Structure 5, 277–289 (1997).
pubmed: 9032078
doi: 10.1016/S0969-2126(97)00185-8
Hettle, A. G. et al. The molecular basis of polysaccharide sulfatase activity and a nomenclature for catalytic subsites in this class of enzyme. Structure 26, 747–758.e4 (2018).
pubmed: 29681469
doi: 10.1016/j.str.2018.03.012
Cartmell, A. et al. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proc. Natl Acad. Sci. USA 114, 7037–7042 (2017).
pubmed: 28630303
pmcid: 5502631
doi: 10.1073/pnas.1704367114
Hehemann, J.-H. et al. Single cell fluorescence imaging of glycan uptake by intestinal bacteria. ISME J. 13, 1883–1889 (2019).
pubmed: 30936421
pmcid: 6776043
doi: 10.1038/s41396-019-0406-z
Reintjes, G., Arnosti, C., Fuchs, B. M. & Amann, R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J. 11, 1640–1650 (2017).
pubmed: 28323277
pmcid: 5520146
doi: 10.1038/ismej.2017.26
Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).
pubmed: 24463512
pmcid: 4282169
doi: 10.1038/nature12907
Lee, C. H. et al. A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers. Appl. Environ. Microbiol. 80, 5965–5973 (2014).
pubmed: 25038102
pmcid: 4178691
doi: 10.1128/AEM.01577-14
Robb, C. S., Reisky, L., Bornscheuer, U. T. & Hehemann, J.-H. Specificity and mechanism of carbohydrate demethylation by cytochrome P450 monooxygenases. Biochem. J. 475, 3875–3886 (2018).
pubmed: 30404923
doi: 10.1042/BCJ20180762
Reisky, L. et al. Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases. Nat. Chem. Biol. 14, 342–344 (2018).
pubmed: 29459682
doi: 10.1038/s41589-018-0005-8
Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W. & Brumer, H. Polysaccharide utilization loci: fueling microbial communities. J. Bacteriol. 199, e00860-16 (2017).
Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).
pubmed: 29255254
doi: 10.1038/s41564-017-0079-1
Gasteiger, E. et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).
pubmed: 12824418
pmcid: 168970
doi: 10.1093/nar/gkg563
Jones, D. R. et al. Analysis of active site architecture and reaction product linkage chemistry reveals a conserved cleavage substrate for an endo-alpha-mannanase within diverse yeast mannans. J. Mol. Biol. 432, 1083–1097 (2020).
pubmed: 31945375
doi: 10.1016/j.jmb.2019.12.048
Stevenson, T. T. & Furneaux, R. H. Chemical methods for the analysis of sulphated galactans from red algae. Carbohydr. Res. 210, 277–298 (1991).
pubmed: 1878882
doi: 10.1016/0008-6215(91)80129-B
Voiges, K., Adden, R., Rinken, M. & Mischnick, P. Critical re-investigation of the alditol acetate method for analysis of substituent distribution in methyl cellulose. Cellulose 19, 993–1004 (2012).
doi: 10.1007/s10570-012-9663-y
Patankar, M. S., Oehninger, S., Barnett, T., Williams, R. L. & Clark, G. F. A revised structure for fucoidan may explain some of its biological activities. J. Biol. Chem. 268, 21770–21776 (1993).
pubmed: 8408031
doi: 10.1016/S0021-9258(20)80609-7
Heiss, C., Wang, Z. & Azadi, P. Sodium hydroxide permethylation of heparin disaccharides. Rapid Commun. Mass Spectrom. 25, 774–778 (2011).
pubmed: 21337639
pmcid: 3928630
doi: 10.1002/rcm.4930
Kariya, Y. et al. Preparation of completely 6-O-desulfated heparin and its ability to enhance activity of basic fibroblast growth factor. J. Biol. Chem. 275, 25949–25958 (2000).
pubmed: 10837484
doi: 10.1074/jbc.M004140200
Ceroni, A. et al. GlycoWorkbench: A tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008).
pubmed: 18311910
doi: 10.1021/pr7008252
Nielsen, S. S. in Food Analysis Laboratory Manual 137–141 (Springer, 2017).
Robb, M., Hobbs, J. K. & Boraston, A. B. Separation and visualization of glycans by fluorophore-assisted carbohydrate electrophoresis. Methods Mol. Biol. 1588, 215–221 (2017). in.
pubmed: 28417372
doi: 10.1007/978-1-4939-6899-2_17
Abbott, D. W. & Boraston, A. B. Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol. 510, 211–231 (2012).
pubmed: 22608728
doi: 10.1016/B978-0-12-415931-0.00011-2
Tomme, P., Boraston, A., Kormos, J. M., Warren, R. A. J. & Kilburn, D. G. Affinity electrophoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules. Enzym. Microb. Technol. 27, 453–458 (2000).
doi: 10.1016/S0141-0229(00)00246-5
Masuko, T. et al. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 339, 69–72 (2005).
pubmed: 15766712
doi: 10.1016/j.ab.2004.12.001
Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).
pubmed: 26112186
doi: 10.1038/ncomms8481
Powell, H. R. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Cryst. 55, 1690–1695 (1999).
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
pubmed: 24451626
pmcid: 3998142
doi: 10.1093/bioinformatics/btu031
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
pubmed: 27799103
doi: 10.1016/S0076-6879(97)76066-X
Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
Lammerts van Bueren, A. et al. Analysis of the reaction coordinate of alpha-L-fucosidases: a combined structural and quantum mechanical approach. J. Am. Chem. Soc. 132, 1804–1806 (2010).
pubmed: 20092273
doi: 10.1021/ja908908q
Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D. Biol. Crystallogr. 62, 1002–1201 (2006).
pubmed: 16929101
doi: 10.1107/S0907444906022116
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Murshudov, G. N. et al. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D. Biol. Crystallogr. 67, 355–367 (2011).
doi: 10.1107/S0907444911001314
Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).
pubmed: 18481394
doi: 10.1038/355472a0
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 12–21 (2010).
doi: 10.1107/S0907444909042073