Rosette-forming glioneuronal tumours are midline, FGFR1-mutated tumours.
2021 WHO classification of CNS tumours
DNA methylation profiling
FGFR1
PIK3CA
PIK3R1
RGNT
multiplexed digital PCR
Journal
Neuropathology and applied neurobiology
ISSN: 1365-2990
Titre abrégé: Neuropathol Appl Neurobiol
Pays: England
ID NLM: 7609829
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
revised:
03
03
2022
received:
17
11
2021
accepted:
06
03
2022
pubmed:
17
3
2022
medline:
7
7
2022
entrez:
16
3
2022
Statut:
ppublish
Résumé
Rosette-forming glioneuronal tumour (RGNT) is a rare central nervous system (CNS) World Health Organization (WHO) grade 1 brain neoplasm. According to the WHO 2021, essential diagnostic criteria are a 'biphasic histomorphology with neurocytic and a glial component, and uniform neurocytes forming rosettes and/or perivascular pseudorosettes associated with synaptophysin expression' and/or DNA methylation profile of RGNT whereas 'FGFR1 mutation with co-occurring PIK3CA and/or NF1 mutation' are desirable criteria. We report a series of 46 cases fulfilling the essential pathological diagnostic criteria for RGNT. FGFR1 and PIK3CA hotspot mutations were searched for by multiplexed digital PCR in all cases, whereas DNA methylation profiling and/or PIK3R1 and NF1 alterations were analysed in a subset of cases. Three groups were observed. The first one included 21 intracranial midline tumours demonstrating FGFR1 mutation associated with PIK3CA or PIK3R1 (n = 19) or NF1 (n = 1) or PIK3CA and NF1 (n = 1) mutation. By DNA methylation profiling, eight cases were classified as RGNT (they demonstrated FGFR1 and PIK3CA or PIK3R1 mutations). Group 2 comprised 11 cases associated with one single FGFR1 mutation. Group 3 included six cases classified as low-grade glioma (LGG) other than RGNT (one-sixth showed FGFR1 mutation and one a FGFR1 and NF1 mutation) and eight cases without FGFR1 mutation. Groups 2 and 3 were enriched in lateral and spinal cases. We suggest adding FGFR1 mutation and intracranial midline location as essential diagnostic criteria. When DNA methylation profiling is not available, a RGNT diagnosis remains certain in cases demonstrating characteristic pathological features and FGFR1 mutation associated with either PIK3CA or PIK3R1 mutation.
Substances chimiques
PIK3R1 protein, human
EC 2.7.1.-
Class I Phosphatidylinositol 3-Kinases
EC 2.7.1.137
Class Ia Phosphatidylinositol 3-Kinase
EC 2.7.1.137
PIK3CA protein, human
EC 2.7.1.137
FGFR1 protein, human
EC 2.7.10.1
Receptor, Fibroblast Growth Factor, Type 1
EC 2.7.10.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e12813Informations de copyright
© 2022 British Neuropathological Society.
Références
Komori T, Scheithauer BW, Hirose T. A rosette-forming glioneuronal tumor of the fourth ventricle: Infratentorial form of dysembryoplastic neuroepithelial tumor? Am J Surg Pathol. 2002;26(5):582-591.
Sievers P, Appay R, Schrimpf D, et al. Rosette-forming glioneuronal tumors share a distinct DNA methylation profile and mutations in FGFR1, with recurrent co-mutation of PIK3CA and NF1. Acta Neuropathol. 2019;138(3):497-504.
Lucas CG, Gupta R, Doo P, et al. Comprehensive analysis of diverse low-grade neuroepithelial tumors with FGFR1 alterations reveals a distinct molecular signature of rosette-forming glioneuronal tumor. Acta Neuropathol Commun. 2020;8(1):151.
Hamauchi S, Tanino M, Hida K, Sasamori T, Yano S, Tanaka S. Spinal rosette-forming glioneuronal tumor: A case report. Medicine (Baltimore). 2019;98(49):e18271.
Yang C, Fang J, Li G, et al. Histopathological, molecular, clinical and radiological characterization of rosette-forming glioneuronal tumor in the central nervous system. Oncotarget. 2017;8(65):109175-109190.
Kitamura Y, Komori T, Shibuya M, et al. Comprehensive genetic characterization of rosette-forming glioneuronal tumors: independent component analysis by tissue microdissection. Brain Pathol. 2018;28(1):87-93.
Ellezam B, Theeler BJ, Luthra R, Adesina AM, Aldape KD, Gilbert MR. Recurrent PIK3CA mutations in rosette-forming glioneuronal tumor. Acta Neuropathol. 2012;123(2):285-287.
Gessi M, Moneim YA, Hammes J, et al. FGFR1 mutations in Rosette-forming glioneuronal tumors of the fourth ventricle. J Neuropathol Exp Neurol. 2014;73(6):580-584.
Lin FY, Bergstrom K, Person R, et al. Integrated tumor and germline whole-exome sequencing identifies mutations in MAPK and PI3K pathway genes in an adolescent with rosette-forming glioneuronal tumor of the fourth ventricle. Cold Spring Harb Mol Case Stud. 2016;2(5):a001057.
Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469-474.
Rivera B, Gayden T, Carrot-Zhang J, et al. Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. Acta Neuropathol. 2016;131(6):847-863.
Fina F, Barets D, Colin C, et al. Droplet digital PCR is a powerful technique to demonstrate frequent FGFR1 duplication in dysembryoplastic neuroepithelial tumors. Oncotarget. 2017;8(2):2104-2113.
Matsumura N, Nobusawa S, Ito J, et al. Multiplex ligation-dependent probe amplification analysis is useful for detecting a copy number gain of the FGFR1 tyrosine kinase domain in dysembryoplastic neuroepithelial tumors. J Neurooncol. 2019;143(1):27-33.
Jones DT, Hutter B, Jager N, et al. International Cancer Genome Consortium PedBrain Tumor P. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927-932.
Deng MY, Sill M, Chiang J, et al. Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathol. 2018;136(2):239-253.
Sievers P, Stichel D, Schrimpf D, et al. FGFR1:TACC1 fusion is a frequent event in molecularly defined extraventricular neurocytoma. Acta Neuropathol. 2018;136(2):293-302.
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-1251.
Appay R, Fina F, Barets D, et al. Multiplexed Droplet Digital PCR Assays for the Simultaneous Screening of Major Genetic Alterations in Tumors of the Central Nervous System. Front Oncol. 2020;10:579762.
Capper D, Stichel D, Sahm F, et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol. 2018;136(2):181-210.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760.
McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303.
McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122.
Wang C, Evans JM, Bhagwate AV, et al. PatternCNV: a versatile tool for detecting copy number changes from exome sequencing data. Bioinformatics. 2014;30(18):2678-2680.
Reifenberger G, The WHO. classification of diffuse gliomas (adult & pediatric). 12th European Congress of Neuropathology, May 31 - June 3, 2021. Odense University Hospital and University of Southern Denmark: Clin Neuropathol. 2021;2021:223-224.
Sturm D, Orr BA, Toprak UH, et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell. 2016;164(5):1060-1072.