Wolframin deficiency is accompanied with metabolic inflexibility in rat striated muscles.
Energy metabolism
Heart
Metabolic inflexibility
Mitochondria
Skeletal muscle
Wolfram syndrome
Wolframin
Journal
Biochemistry and biophysics reports
ISSN: 2405-5808
Titre abrégé: Biochem Biophys Rep
Pays: Netherlands
ID NLM: 101660999
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
received:
10
12
2021
revised:
28
02
2022
accepted:
08
03
2022
entrez:
17
3
2022
pubmed:
18
3
2022
medline:
18
3
2022
Statut:
epublish
Résumé
The protein wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. Mutations in Wfs1 gene cause autosomal recessive disorder Wolfram syndrome (WS). The first symptom of the WS is diabetes mellitus, so accurate diagnosis of the disease as WS is often delayed. In this study we aimed to characterize the role of the Wfs1 deficiency on bioenergetics of muscles. Alterations in the bioenergetic profiles of Wfs1-exon-5-knock-out (Wfs1KO) male rats in comparison with their wild-type male littermates were investigated using high-resolution respirometry, and enzyme activity measurements. The changes were followed in oxidative (cardiac and soleus) and glycolytic (rectus femoris and gastrocnemius) muscles. There were substrate-dependent alterations in the oxygen consumption rate in Wfs1KO rat muscles. In soleus muscle, decrease in respiration rate was significant in all the followed pathways. The relatively small alterations in muscle during development of WS, such as increased mitochondrial content and/or increase in the OxPhos-related enzymatic activity could be an adaptive response to changes in the metabolic environment. The significant decrease in the OxPhos capacity is substrate dependent indicating metabolic inflexibility when multiple substrates are available.
Identifiants
pubmed: 35295995
doi: 10.1016/j.bbrep.2022.101250
pii: S2405-5808(22)00050-4
pmc: PMC8918847
doi:
Types de publication
Journal Article
Langues
eng
Pagination
101250Informations de copyright
© 2022 The Authors.
Déclaration de conflit d'intérêts
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Acta Physiol (Oxf). 2020 Mar;228(3):e13430
pubmed: 31840389
Hum Mol Genet. 2013 Jan 15;22(2):203-17
pubmed: 23035048
J Med Genet. 1997 Oct;34(10):838-41
pubmed: 9350817
EBioMedicine. 2017 Apr;18:146-156
pubmed: 28389215
Int J Mol Sci. 2018 Jul 21;19(7):
pubmed: 30037119
Mitochondrion. 2011 Nov;11(6):893-904
pubmed: 21855655
Mol Cell Biochem. 1998 Jul;184(1-2):81-100
pubmed: 9746314
Int J Mol Sci. 2018 Sep 26;19(10):
pubmed: 30261663
Methods Mol Biol. 2012;810:25-58
pubmed: 22057559
Biochem Biophys Res Commun. 2011 Jul 29;411(2):247-52
pubmed: 21723259
J Transl Med. 2019 Jul 23;17(1):238
pubmed: 31337416
Diabetes Care. 1995 Dec;18(12):1566-70
pubmed: 8722052
PLoS Biol. 2016 Jul 19;14(7):e1002511
pubmed: 27434582
Hum Mol Genet. 2003 Aug 15;12(16):2003-12
pubmed: 12913071
J Gastroenterol. 2008;43(10):780-8
pubmed: 18958547
Eye (Lond). 1997;11 ( Pt 6):882-8
pubmed: 9537152
Sci Rep. 2020 Mar 16;10(1):4785
pubmed: 32179840
Hum Mol Genet. 2006 May 15;15(10):1600-9
pubmed: 16571599
Neurosci Biobehav Rev. 2020 Nov;118:775-783
pubmed: 32949681
Acta Medica (Hradec Kralove). 2001;44(3):115-8
pubmed: 11811080
J Biol Chem. 2005 Nov 25;280(47):39609-15
pubmed: 16195229
J Clin Endocrinol Metab. 2004 Apr;89(4):1656-61
pubmed: 15070927
Cardiovasc Diabetol. 2009 Jul 22;8:39
pubmed: 19624828
Hum Mol Genet. 2008 Jan 15;17(2):190-200
pubmed: 17947299
Endocr Rev. 2018 Aug 1;39(4):489-517
pubmed: 29697773
Biochem Biophys Res Commun. 2009 Dec 25;390(4):1182-5
pubmed: 19861117
Curr Opin Pediatr. 2012 Aug;24(4):512-7
pubmed: 22790102
Cell Death Dis. 2018 Mar 6;9(3):364
pubmed: 29511163
Nat Protoc. 2008;3(6):965-76
pubmed: 18536644
Physiol Genomics. 2013 Mar 1;45(5):182-90
pubmed: 23321269
Am J Hum Genet. 1996 May;58(5):963-70
pubmed: 8651280
Hum Mol Genet. 2001 Mar 1;10(5):477-84
pubmed: 11181571
Biochim Biophys Acta Mol Cell Res. 2021 Apr;1868(4):118954
pubmed: 33422617
J Med Genet. 2005 Dec;42(12):893-902
pubmed: 15772126
Oxid Med Cell Longev. 2017;2017:1372640
pubmed: 28781720
Hum Mol Genet. 2004 Jun 1;13(11):1159-70
pubmed: 15056606
Sci Rep. 2017 Aug 31;7(1):10220
pubmed: 28860598
J Clin Invest. 1993 Mar;91(3):1095-8
pubmed: 8383698
Am J Hum Genet. 2007 Oct;81(4):673-83
pubmed: 17846994
Pediatr Diabetes. 2017 Dec;18(8):934-941
pubmed: 28271591
Sci Signal. 2018 Oct 23;11(553):
pubmed: 30352948
Transl Res. 2021 Mar;229:135-141
pubmed: 32841735
Genomics. 1997 Jan 1;39(1):8-18
pubmed: 9027481
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5292-301
pubmed: 25422446
J Clin Invest. 1993 Jul;92(1):91-8
pubmed: 8326021
Mol Cell Biochem. 2017 Aug;432(1-2):141-158
pubmed: 28293876
Hum Mol Genet. 2012 May 15;21(10):2277-87
pubmed: 22343142
Diabetes. 2020 Oct;69(10):2054-2057
pubmed: 32958606
Am J Physiol Endocrinol Metab. 2004 Nov;287(5):E896-905
pubmed: 15280150
J Med Genet. 1994 Apr;31(4):328-30
pubmed: 8071960
Curr Opin Physiol. 2020 Oct;17:115-123
pubmed: 32864536
Cell Metab. 2017 May 2;25(5):1027-1036
pubmed: 28467922
FEBS Lett. 2006 Oct 16;580(24):5635-40
pubmed: 16989814
Oxid Med Cell Longev. 2018 Nov 21;2018:3175313
pubmed: 30584460
Heart Fail Rev. 2014 Jan;19(1):35-48
pubmed: 23443849
Front Physiol. 2019 Mar 13;10:172
pubmed: 30930784
Genes Dev. 2009 May 15;23(10):1183-94
pubmed: 19451219
Diabet Med. 2011 Nov;28(11):1337-42
pubmed: 21726277
Arch Argent Pediatr. 2016 Jun 1;114(3):e163-6
pubmed: 27164349
J Biol Chem. 2003 Dec 26;278(52):52755-62
pubmed: 14527944
J Neurochem. 2013 Aug;126 Suppl 1:94-102
pubmed: 23859345
Oxid Med Cell Longev. 2016;2016:8296150
pubmed: 26881042
Biochim Biophys Acta Gen Subj. 2020 Apr;1864(4):129523
pubmed: 31935437
Clin Genet. 2011 Feb;79(2):103-17
pubmed: 20738327