Molecular Characterization of KRAS Wild-type Tumors in Patients with Pancreatic Adenocarcinoma.


Journal

Clinical cancer research : an official journal of the American Association for Cancer Research
ISSN: 1557-3265
Titre abrégé: Clin Cancer Res
Pays: United States
ID NLM: 9502500

Informations de publication

Date de publication:
13 06 2022
Historique:
received: 12 10 2021
revised: 20 12 2021
accepted: 16 03 2022
pubmed: 19 3 2022
medline: 15 6 2022
entrez: 18 3 2022
Statut: ppublish

Résumé

KRAS mutation (MT) is a major oncogenic driver in pancreatic ductal adenocarcinoma (PDAC). A small subset of PDACs harbor KRAS wild-type (WT). We aim to characterize the molecular profiles of KRAS WT PDAC to uncover new pathogenic drivers and offer targeted treatments. Tumor tissue obtained from surgical or biopsy material was subjected to next-generation DNA/RNA sequencing, microsatellite instability (MSI) and mismatch repair status determination. Of the 2,483 patients (male 53.7%, median age 66 years) studied, 266 tumors (10.7%) were KRAS WT. The most frequently mutated gene in KRAS WT PDAC was TP53 (44.5%), followed by BRAF (13.0%). Multiple mutations within the DNA-damage repair (BRCA2, ATM, BAP1, RAD50, FANCE, PALB2), chromatin remodeling (ARID1A, PBRM1, ARID2, KMT2D, KMT2C, SMARCA4, SETD2), and cell-cycle control pathways (CDKN2A, CCND1, CCNE1) were detected frequently. There was no statistically significant difference in PD-L1 expression between KRAS WT (15.8%) and MT (17%) tumors. However, KRAS WT PDAC were more likely to be MSI-high (4.7% vs. 0.7%; P < 0.05), tumor mutational burden-high (4.5% vs. 1%; P < 0.05), and exhibit increased infiltration of CD8+ T cells, natural killer cells, and myeloid dendritic cells. KRAS WT PDACs exhibited gene fusions of BRAF (6.6%), FGFR2 (5.2%), ALK (2.6%), RET (1.3%), and NRG1 (1.3%), as well as amplification of FGF3 (3%), ERBB2 (2.2%), FGFR3 (1.8%), NTRK (1.8%), and MET (1.3%). Real-world evidence reveals a survival advantage of KRAS WT patients in overall cohorts as well as in patients treated with gemcitabine/nab-paclitaxel or 5-FU/oxaliplatin. KRAS WT PDAC represents 10.7% of PDAC and is enriched with targetable alterations, including immuno-oncologic markers. Identification of KRAS WT patients in clinical practice may expand therapeutic options in a clinically meaningful manner.

Identifiants

pubmed: 35302596
pii: 699283
doi: 10.1158/1078-0432.CCR-21-3581
pmc: PMC9541577
mid: NIHMS1828798
doi:

Substances chimiques

KRAS protein, human 0
Nuclear Proteins 0
Transcription Factors 0
Proto-Oncogene Proteins B-raf EC 2.7.11.1
SMARCA4 protein, human EC 3.6.1.-
DNA Helicases EC 3.6.4.-
Proto-Oncogene Proteins p21(ras) EC 3.6.5.2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2704-2714

Subventions

Organisme : NCI NIH HHS
ID : P30 CA022453
Pays : United States

Informations de copyright

©2022 American Association for Cancer Research.

Références

Lancet Oncol. 2020 Oct;21(10):1353-1365
pubmed: 32919526
JCO Precis Oncol. 2021 Aug 25;5:
pubmed: 34476331
J Gastrointest Oncol. 2018 Feb;9(1):1-10
pubmed: 29564165
Genome Biol. 2016 Oct 20;17(1):218
pubmed: 27765066
N Engl J Med. 2019 Jul 25;381(4):317-327
pubmed: 31157963
Cancer. 2014 Oct 1;120(19):2980-5
pubmed: 25041791
Oncogene. 2018 Jun;37(24):3183-3199
pubmed: 29540830
Nat Commun. 2017 Oct 23;8(1):1090
pubmed: 29061961
NPJ Precis Oncol. 2018 Mar 7;2(1):7
pubmed: 29872725
J Pancreat Cancer. 2018 Nov 01;4(1):81-87
pubmed: 30788462
Nat Commun. 2021 Mar 5;12(1):1482
pubmed: 33674596
Lancet Oncol. 2020 Jun;21(6):796-807
pubmed: 32416072
Lancet Oncol. 2020 Apr;21(4):508-518
pubmed: 32135080
Clin Cancer Res. 2021 Jun 1;27(11):3154-3166
pubmed: 33824166
Exp Biol Med (Maywood). 2021 Jan;246(1):31-39
pubmed: 33019809
JCO Precis Oncol. 2017 Nov;1:1-5
pubmed: 35172502
JCO Precis Oncol. 2021 Jan 11;5:
pubmed: 34250383
J Clin Oncol. 2010 Aug 1;28(22):3605-10
pubmed: 20606093
Pigment Cell Melanoma Res. 2015 Sep;28(5):607-10
pubmed: 26072686
Genome Med. 2019 May 24;11(1):34
pubmed: 31126321
J Natl Compr Canc Netw. 2017 May;15(5):555-562
pubmed: 28476735
Semin Oncol. 2021 Feb;48(1):10-18
pubmed: 33676749
Nat Rev Gastroenterol Hepatol. 2020 Mar;17(3):153-168
pubmed: 32005945
Trends Biochem Sci. 2014 Feb;39(2):91-100
pubmed: 24388967
Nat Commun. 2015 Apr 09;6:6744
pubmed: 25855536
Cancer Med. 2018 Mar;7(3):746-756
pubmed: 29436178
Nature. 2016 Mar 3;531(7592):47-52
pubmed: 26909576
Ann Oncol. 2020 Nov;31(11):1491-1505
pubmed: 32853681
Lancet. 2020 Jun 27;395(10242):2008-2020
pubmed: 32593337
Clin Cancer Res. 2019 Aug 1;25(15):4674-4681
pubmed: 31068372
Cancer Discov. 2018 Sep;8(9):1096-1111
pubmed: 29903880
J Immunother Cancer. 2020 Mar;8(1):
pubmed: 32217756
Lancet Oncol. 2020 May;21(5):671-684
pubmed: 32203698
J Pathol. 2019 Mar;247(3):347-356
pubmed: 30430578
CA Cancer J Clin. 2021 Jan;71(1):7-33
pubmed: 33433946
Cancer Discov. 2020 Jun;10(6):792-805
pubmed: 32193223
J Clin Oncol. 2020 Jan 1;38(1):1-10
pubmed: 31682550
JCO Precis Oncol. 2020 Jul 27;4:
pubmed: 32923899
Int J Cancer. 2016 Feb 15;138(4):881-90
pubmed: 26314551
Am J Clin Oncol. 2019 Feb;42(2):184-189
pubmed: 30418178
Br J Cancer. 2017 May 23;116(11):1462-1469
pubmed: 28449008
J Exp Clin Cancer Res. 2020 Oct 28;39(1):227
pubmed: 33115526
Pancreas. 2016 Sep;45(8):1111-4
pubmed: 26967456
Mod Pathol. 2020 Apr;33(4):657-664
pubmed: 31558784
Gut. 2021 Oct;70(10):1894-1903
pubmed: 32933947
Nature. 2018 Feb 1;554(7690):62-68
pubmed: 29364867
JAMA Oncol. 2019 Oct 01;5(10):1431-1438
pubmed: 31318392
J Clin Oncol. 2020 Aug 5;:JCO2001364
pubmed: 32755482
Gastroenterology. 2020 Jun;158(8):2072-2081
pubmed: 32199881
Clin Cancer Res. 2019 Aug 1;25(15):4712-4722
pubmed: 31028088
Nature. 2017 Aug 10;548(7666):234-238
pubmed: 28783719
Cell. 2021 Mar 4;184(5):1142-1155
pubmed: 33667368

Auteurs

Philip A Philip (PA)

Wayne State University, School of Medicine, Karmanos Cancer Center, Detroit, Michigan.

Ibrahim Azar (I)

Wayne State University, School of Medicine, Karmanos Cancer Center, Detroit, Michigan.

Joanne Xiu (J)

Caris Life Sciences, Phoenix, Arizona.

Michael J Hall (MJ)

Fox Chase Cancer Center, Philadelphia, Pennsylvania.

Andrew Eugene Hendifar (AE)

Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.

Emil Lou (E)

Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.

Jimmy J Hwang (JJ)

Levine Cancer Institute, Charlotte, North Carolina.

Jun Gong (J)

Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.

Rebecca Feldman (R)

Caris Life Sciences, Phoenix, Arizona.

Michelle Ellis (M)

Caris Life Sciences, Phoenix, Arizona.

Phil Stafford (P)

Caris Life Sciences, Phoenix, Arizona.

David Spetzler (D)

Caris Life Sciences, Phoenix, Arizona.

Moh'd M Khushman (MM)

Medical Oncology, The University of South Alabama, Mitchell Cancer Institute, Mobile, Alabama.

Davendra Sohal (D)

University of Cincinnati, Cincinnati, Ohio.

A Craig Lockhart (AC)

Medical University of South Carolina, Charleston, South Carolina.

Benjamin A Weinberg (BA)

Georgetown University, Washington, District of Columbia.

Wafik S El-Deiry (WS)

Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, Rhode Island.

John Marshall (J)

Georgetown University, Washington, District of Columbia.

Anthony F Shields (AF)

Wayne State University, School of Medicine, Karmanos Cancer Center, Detroit, Michigan.

W Michael Korn (WM)

Caris Life Sciences, Phoenix, Arizona.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH