Glutathione S-transferase: a candidate gene for berry color in muscadine grapes (Vitis rotundifolia).
Muscadinia rotundifolia
Vitis
anthocyanin
berry color
glutathione S-transferase
Journal
G3 (Bethesda, Md.)
ISSN: 2160-1836
Titre abrégé: G3 (Bethesda)
Pays: England
ID NLM: 101566598
Informations de publication
Date de publication:
06 05 2022
06 05 2022
Historique:
accepted:
09
03
2022
received:
23
12
2021
pubmed:
19
3
2022
medline:
10
5
2022
entrez:
18
3
2022
Statut:
ppublish
Résumé
Muscadine grapes (Vitis rotundifolia Michx.) are a specialty crop cultivated in the southern United States. Muscadines (2n = 40) belong to the Muscadinia subgenus of Vitis, while other cultivated grape species belong to the subgenus Euvitis (2n = 38). The muscadine berry color locus was mapped to a 0.8 Mbp region syntenic with chromosome 4 of Vitis vinifera. In this study, we identified glutathione S-transferase4 as a likely candidate gene for anthocyanin transport within the berry color locus. PCR and Kompetitive allele-specific PCR genotyping identified a single intragenic SNP (C/T) marker corresponding to a proline to leucine mutation within the muscadine glutathione S-transferase4 (VrGST4) that differentiated black (CC and CT) from bronze (TT) muscadines in 126 breeding selections, 76 cultivars, and 359 progeny from 3 mapping populations. Anthocyanin profiling on a subset of the progeny indicated a dominant VrGST4 action. VrGST4 was expressed in skins of both black and bronze muscadines at similar levels. While nonsynonymous polymorphisms between black and bronze muscadines were discovered in VrGSTF12, another Type I GST-coding gene in the muscadine color locus, this gene was ruled out as a possible candidate for berry color because RNA sequencing indicated it is not expressed in berry skins at véraison from black or bronze genotypes. These results suggest that the bronze phenotype in muscadines is regulated by a mechanism distinct from the MybA gene cluster responsible for berry color variation in Vitis vinifera.
Identifiants
pubmed: 35302606
pii: 6550507
doi: 10.1093/g3journal/jkac060
pmc: PMC9073687
pii:
doi:
Substances chimiques
Anthocyanins
0
Antioxidants
0
Glutathione Transferase
EC 2.5.1.18
Glutathione
GAN16C9B8O
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
Références
Methods Enzymol. 2005;401:169-86
pubmed: 16399386
Trends Plant Sci. 2000 May;5(5):193-8
pubmed: 10785664
Plant J. 2003 Nov;36(4):433-42
pubmed: 14617075
Plant J. 2008 May;54(4):733-49
pubmed: 18476875
Plant Cell. 1998 Jul;10(7):1135-49
pubmed: 9668133
Phytochemistry. 2010 Mar;71(4):338-50
pubmed: 20079507
J Agric Food Chem. 2010 Apr 28;58(8):4681-92
pubmed: 20334341
Hortic Res. 2019 Mar 1;6:40
pubmed: 30854214
Mol Genet Genomics. 2004 Jun;271(5):511-21
pubmed: 15069639
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
pubmed: 7984417
J Plant Res. 2015 Jul;128(4):687-96
pubmed: 25810223
Plant Cell. 1995 Jul;7(7):1071-1083
pubmed: 12242398
Front Plant Sci. 2015 Nov 04;6:834
pubmed: 26582400
Nucleic Acids Res. 1988 Nov 25;16(22):10881-90
pubmed: 2849754
BMC Plant Biol. 2014 Feb 03;14:39
pubmed: 24490620
Front Plant Sci. 2019 Sep 04;10:1045
pubmed: 31552064
Science. 2004 May 14;304(5673):982
pubmed: 15143274
J Plant Physiol. 2012 Apr 15;169(6):636-42
pubmed: 22251797
Theor Appl Genet. 2019 May;132(5):1571-1585
pubmed: 30756127
Plant Physiol. 2006 Feb;140(2):499-511
pubmed: 16384897
Proc Natl Acad Sci U S A. 1986 Dec;83(24):9631-5
pubmed: 3025847
Curr Opin Plant Biol. 1998 Jun;1(3):258-66
pubmed: 10066594
Plant Cell Rep. 2016 Apr;35(4):831-43
pubmed: 26743425
Arabidopsis Book. 2010;8:e0131
pubmed: 22303257
Plant J. 2007 Mar;49(5):772-85
pubmed: 17316172
J Agric Food Chem. 2009 May 13;57(9):3512-8
pubmed: 19338353
Genome Biol. 2002;3(3):REVIEWS3004
pubmed: 11897031
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
PLoS One. 2014 Dec 08;9(12):e113583
pubmed: 25486271
Sci Rep. 2017 Oct 30;7(1):14363
pubmed: 29084977
Gigascience. 2021 Feb 16;10(2):
pubmed: 33590861
Nature. 1995 Jun 1;375(6530):397-400
pubmed: 7760932
Theor Appl Genet. 2007 Feb;114(4):723-30
pubmed: 17221259
Plant Physiol. 2000 Aug;123(4):1561-70
pubmed: 10938372
Front Plant Sci. 2016 Aug 03;7:1166
pubmed: 27536314
Hortic Res. 2022 Jan 18;:
pubmed: 35040982
Mol Plant. 2012 Mar;5(2):387-400
pubmed: 22201047
J Agric Food Chem. 2003 Feb 12;51(4):957-63
pubmed: 12568555
Plant J. 2009 Apr;58(1):53-68
pubmed: 19067976
BMC Genomics. 2013 Jan 18;14:41
pubmed: 23331995
Plant Mol Biol. 2005 Jan;57(1):53-66
pubmed: 15821868
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
Genetics. 2009 Nov;183(3):1127-39
pubmed: 19720862
Planta. 2002 Oct;215(6):924-33
pubmed: 12355152
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Plant Cell. 1993 Nov;5(11):1497-1512
pubmed: 12271045
Nat Methods. 2016 Dec;13(12):1050-1054
pubmed: 27749838
Vitam Horm. 2005;72:155-202
pubmed: 16492471
J Exp Bot. 2008;59(13):3621-34
pubmed: 18836188
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:127-158
pubmed: 15012285
Molecules. 2010 Dec 09;15(12):9057-91
pubmed: 21150825
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3530-5
pubmed: 21245334
Plant J. 2004 Jan;37(1):104-14
pubmed: 14675436
Nat Methods. 2017 Apr;14(4):417-419
pubmed: 28263959
G3 (Bethesda). 2021 Apr 15;11(4):
pubmed: 33824960
PLoS One. 2016 Mar 14;11(3):e0149560
pubmed: 26974672