The role of neutralizing antibodies by sVNT after two doses of BNT162b2 mRNA vaccine in a cohort of Italian healthcare workers.


Journal

Clinical chemistry and laboratory medicine
ISSN: 1437-4331
Titre abrégé: Clin Chem Lab Med
Pays: Germany
ID NLM: 9806306

Informations de publication

Date de publication:
25 05 2022
Historique:
received: 30 12 2021
accepted: 25 02 2022
pubmed: 19 3 2022
medline: 14 5 2022
entrez: 18 3 2022
Statut: epublish

Résumé

Evaluating anti-SARS-CoV-2 antibody levels is a current priority to drive immunization, as well as to predict when a vaccine booster dose may be required and for which priority groups. The aim of our study was to investigate the kinetics of anti-SARS-CoV-2 Spike S1 protein IgG (anti-S1 IgG) antibodies and neutralizing antibodies (NAbs) in an Italian cohort of healthcare workers (HCWs), following the Pfizer/BNT162b2 mRNA vaccine, over a period of up to six months after the second dose. We enrolled 57 HCWs, without clinical history of COVID-19 infection. Fluoroenzyme-immunoassay was used for the quantitative anti-S1 IgG antibodies at different time points T1 (one month), T3 (three months) and T6 (six months) following the second vaccine shot. Simultaneously, a commercial surrogate virus neutralization test (sVNT) was used for the determination of NAbs, expressed as inhibition percentage (% IH). Median values of anti-S1 IgG antibodies decreased from T1 (1,452 BAU/mL) to T6 (104 BAU/mL) with a percent variation of 92.8% while the sVNT showed a percent variation of 34.3% for the same time frame. The decline in anti-S1 IgG antibodies from T1 to T6 was not accompanied by a loss of the neutralizing capacity of antibodies. In fact at T6 a neutralization percentage <20% IH was observed only in 3.51% of HCWs. Our findings reveal that the decrease of anti-S1 IgG levels do not correspond in parallel to a decrease of NAbs over time, which highlights the necessity of using both assays to assess vaccination effectiveness.

Identifiants

pubmed: 35303766
pii: cclm-2022-0170
doi: 10.1515/cclm-2022-0170
doi:

Substances chimiques

Antibodies, Neutralizing 0
Antibodies, Viral 0
COVID-19 Vaccines 0
Immunoglobulin G 0
Vaccines, Synthetic 0
mRNA Vaccines 0
BNT162 Vaccine N38TVC63NU

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

934-940

Informations de copyright

© 2022 Walter de Gruyter GmbH, Berlin/Boston.

Références

Zhu, N, Zhang, D, Wang, W, Li, X, Yang, B, Song, J, et al.. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–33. https://doi.org/10.1056/nejmoa2001017.
Mallah, SI, Ghorab, OK, Al-Salmi, S, Abdellatif, OS, Tharmaratnam, T, Iskandar, MA, et al.. COVID-19: breaking down a global health crisis. Ann Clin Microbiol Antimicrob 2021;20:35. https://doi.org/10.1186/s12941-021-00438-7.
Ray, D, Salvatore, M, Bhattacharyya, R, Wang, L, Du, J, Mohammed, S, et al.. Predictions, role of interventions and effects of a historic national lockdown in India’s response to the COVID-19 pandemic: data science call to arms. Harv Data Sci Rev 2020;2020(1 Suppl). https://doi.org/10.1162/99608f92.60e08ed5.
Polack, FP, Thomas, SJ, Kitchin, N, Absalon, J, Gurtman, A, Lockhart, S, et al.. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383:2603–15. https://doi.org/10.1056/nejmoa2034577.
Salute, M. Piano strategico nazionale dei vaccini per la prevenzione delle infezioni da SARS-CoV-2. https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2021&codLeg=78657&parte=1%20&serie=null [Accessed 7 Apr 2021].
Mateo-Urdiales, A, Del Manso, M, Andrianou, X, Spuri, M, D’Ancona, F, Filia, A, et al.. Initial impact of SARS-Cov-2 vaccination on healthcare workers in Italy – update on the 28th of March 2021. Vaccine 2021;39:4788–92. https://doi.org/10.1016/j.vaccine.2021.07.003.
Collier, AY, Yu, J, McMahan, K, Liu, J, Chandrashekar, A, Maron, JS, et al.. Differential kinetics of immune responses elicited by COVID-19 vaccines. N Engl J Med 2021;385:2010–12. https://doi.org/10.1056/NEJMc2115596.
Pegu, A, O’Connell, SE, Schmidt, SD, O’Dell, S, Talana, CA, Lai, L, et al.. Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science 2021;373:1372–7. https://doi.org/10.1126/science.abj4176.
Barouch, DH, Stephenson, KE, Sadoff, J, Yu, J, Chang, A, Gebre, M, et al.. Durable humoral and cellular immune responses eight months after Ad26.COV2.S vaccination. N Engl J Med 2021;385:951–3. https://doi.org/10.1056/nejmc2108829.
Khoury, DS, Cromer, D, Reynaldi, A, Schlub, TE, Wheatley, AK, Juno, JA, et al.. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med 2021;27:1205–11. https://doi.org/10.1038/s41591-021-01377-8.
Roozendaal, R, Solforosi, L, Stieh, DJ, Serroyen, J, Straetemans, R, Dari, A, et al.. SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques. Nat Commun 2021;12:5877. https://doi.org/10.1038/s41467-021-26117-x.
Muir, L, Jaffer, A, Rees-Spear, C, Gopalan, V, Chang, FY, Fernando, R, et al.. Neutralizing antibody responses after SARS-CoV-2 infection in end-stage kidney disease and protection against reinfection. Kidney Int Rep 2021;6:1799–809. https://doi.org/10.1016/j.ekir.2021.03.902.
Earle, KA, Ambrosino, DM, Fiore-Gartland, A, Goldblatt, D, Gilbert, PB, Siber, GR, et al.. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021;39:4423–8. https://doi.org/10.1016/j.vaccine.2021.05.063.
Feng, S, Phillips, DJ, White, T, Sayal, H, Aley, PK, Bibi, S, et al.. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med 2021;27:2032–40. https://doi.org/10.1038/s41591-021-01540-1.
Jackson, LA, Anderson, EJ, Rouphael, NG, Roberts, PC, Makhene, M, Coler, RN, et al.. An mRNA vaccine against SARS-CoV-2 – preliminary report. N Engl J Med 2020;383:1920–31. https://doi.org/10.1056/nejmoa2022483.
Shah, M, Ahmad, B, Choi, S, Woo, HG. Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Comput Struct Biotechnol J 2020;18:3402–14. https://doi.org/10.1016/j.csbj.2020.11.002.
Montesinos, I, Dahma, H, Wolff, F, Dauby, N, Delaunoy, S, Wuyts, M, et al.. Neutralizing antibody responses following natural SARS-CoV-2 infection: dynamics and correlation with commercial serologic tests. J Clin Virol 2021;144:104988. https://doi.org/10.1016/j.jcv.2021.104988.
Wang, Z, Muecksch, F, Schaefer-Babajew, D, Finkin, S, Viant, C, Gaebler, C, et al.. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 2021;595:426–31. https://doi.org/10.1038/s41586-021-03696-9.
Borobia, AM, Carcas, AJ, Perez-Olmeda, M, Castano, L, Bertran, MJ, Garcia-Perez, J, et al.. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 2021;398:121–30. https://doi.org/10.1016/S0140-6736(21)01420-3.
Walsh, EE, Frenck, RWJr, Falsey, AR, Kitchin, N, Absalon, J, Gurtman, A, et al.. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N Engl J Med 2020;383:2439–50. https://doi.org/10.1056/nejmoa2027906.
Terpos, E, Trougakos, IP, Apostolakou, F, Charitaki, I, Sklirou, AD, Mavrianou, N, et al.. Age-dependent and gender-dependent antibody responses against SARS-CoV-2 in health workers and octogenarians after vaccination with the BNT162b2 mRNA vaccine. Am J Hematol 2021;96:E257–9. https://doi.org/10.1002/ajh.26185.
Turner, JS, O’Halloran, JA, Kalaidina, E, Kim, W, Schmitz, AJ, Zhou, JQ, et al.. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021;596:109–13. https://doi.org/10.1038/s41586-021-03738-2.
Terpos, E, Trougakos, IP, Karalis, V, Ntanasis-Stathopoulos, I, Gumeni, S, Apostolakou, F, et al.. Kinetics of anti-SARS-CoV-2 antibody responses three months post complete vaccination with BNT162b2; a prospective study in 283 health workers. Cells 2021;10:1942. https://doi.org/10.3390/cells10081942.
Schulte-Pelkum, J. Comment on Favresse et al. persistence of anti-SARS-CoV-2 antibodies depends on the analytical kit: a report for up to 10 months after infection. Microorganisms 2021, 9, 556. Microorganisms 2021;9:178. https://doi.org/10.3390/microorganisms9081786.
Dolscheid-Pommerich, R, Bartok, E, Renn, M, Kümmerer, BM, Schulte, B, Schmithausen, RM, et al.. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity. J Med Virol 2022;94:388–92. https://doi.org/10.1002/jmv.27287.
ISS Rn. Impatto della vaccinazione COVID-19 sul rischio di infezione da SARS-CoV-2 e successivo ricovero e decesso in Italia (27.12.2020 – 29.08.2021) Valutazione combinata dei dati dell’anagrafe nazionale vaccini e del sistema di sorveglianza integrata COVID-19.
WHO. WHO target product profiles for COVID-19 vaccines. Geneva: World Health Organization; 2020.
Favresse, J, Bayart, JL, Mullier, F, Elsen, M, Eucher, C, Van Eeckhoudt, S, et al.. Antibody titres decline three-month post-vaccination with BNT162b2. Emerg Microb Infect 2021;10:1495–8. https://doi.org/10.1080/22221751.2021.1953403.
Ebinger, JE, Fert-Bober, J, Printsev, I, Wu, M, Sun, N, Prostko, JC, et al.. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat Med 2021;27:981–4. https://doi.org/10.1038/s41591-021-01325-6.
Favresse, J, Bayart, JL, Mullier, F, Dogne, JM, Closset, M, Douxfils, J. Early antibody response in health-care professionals after two doses of SARS-CoV-2 mRNA vaccine (BNT162b2). Clin Microbiol Infect 2021;27:1351 e5–7. https://doi.org/10.1016/j.cmi.2021.05.004.
Padoan, A, Dall’Olmo, L, Rocca, FD, Barbaro, F, Cosma, C, Basso, D, et al.. Antibody response to first and second dose of BNT162b2 in a cohort of characterized healthcare workers. Clin Chim Acta 2021;519:60–3. https://doi.org/10.1016/j.cca.2021.04.006.
Tre-Hardy, M, Cupaiolo, R, Papleux, E, Wilmet, A, Horeanga, A, Antoine-Moussiaux, T, et al.. Reactogenicity, safety and antibody response, after one and two doses of mRNA-1273 in seronegative and seropositive healthcare workers. J Infect 2021;83:237–79. https://doi.org/10.1016/j.jinf.2021.03.025.
Salvagno, GL, Henry, BM, di Piazza, G, Pighi, L, De Nitto, S, Bragantini, D, et al.. Anti-SARS-CoV-2 receptor-binding domain total antibodies response in seropositive and seronegative healthcare workers undergoing COVID-19 mRNA BNT162b2 vaccination. Diagnostics 2021;11:832. https://doi.org/10.3390/diagnostics11050832.
Nuccetelli, M, Pieri, M, Grelli, S, Ciotti, M, Miano, R, Andreoni, M, et al.. SARS-CoV-2 infection serology: a useful tool to overcome lockdown? Cell Death Dis 2020;6:38. https://doi.org/10.1038/s41420-020-0275-2.
Matusali, G, Colavita, F, Lapa, D, Meschi, S, Bordi, L, Piselli, P, et al.. SARS-CoV-2 serum neutralization assay: a traditional tool for a brand-new virus. Viruses 2021;13. https://doi.org/10.3390/v13040655.
Malipiero, G, D’Agaro, P, Segat, L, Moratto, A, Villalta, D. Long-term decay of anti-RBD IgG titers after BNT162b2 vaccination is not mirrored by loss of neutralizing bioactivity against SARS-CoV-2. Clin Chim Acta 2022;524:11–7. https://doi.org/10.1016/j.cca.2021.11.023.
Padoan, A, Cosma, C, Bonfante, F, Della Rocca, F, Barbaro, F, Santarossa, C, et al.. Neutralizing antibody titers six months after comirnaty vaccination: kinetics and comparison with SARS-CoV-2 immunoassays. Clin Chem Lab Med 2021;60:456–63. https://doi.org/10.1515/cclm-2021-1247.
Salvagno, GL, Henry, BM, Pighi, L, De Nitto, S, Gianfilippi, G, Lippi, G. The pronounced decline of anti-SARS-CoV-2 spike trimeric IgG and RBD IgG in baseline seronegative individuals six months after BNT162b2 vaccination is consistent with the need for vaccine boosters. Clin Chem Lab Med 2021;60:e29–31. https://doi.org/10.1515/cclm-2021-1184.
Benning, L, Morath, C, Bartenschlager, M, Reineke, M, Töllner, M, Nusshag, C, et al.. Neutralizing antibody activity against the B.1.617.2 (delta) variant eight months after two-dose vaccination with BNT162b2 in health care workers. Clin Microbiol Infect 2022 Feb 3. https://doi.org/10.1016/j.cmi.2022.01.011 [Epub ahead of print].
Evans, JP, Zeng, C, Carlin, C, Lozanski, G, Saif, LJ, Oltz, EM, et al.. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci Transl Med 2022 Feb 15:eabn8057. https://doi.org/10.1126/scitranslmed.abn8057 [Epub ahead of print].
Lippi, G, Plebani, M. Not all SARS-CoV-2 IgG and neutralizing antibody assays are created equal. Clin Chim Acta 2022;526:81–2. https://doi.org/10.1016/j.cca.2021.12.020.
Infantino, M, Pieri, M, Nuccetelli, M, Grossi, V, Lari, B, Tomassetti, F, et al.. The WHO International Standard for COVID-19 serological tests: towards harmonization of anti-spike assays. Int Immunopharm 2021;100:108095. https://doi.org/10.1016/j.intimp.2021.108095.
Perkmann, T, Perkmann-Nagele, N, Koller, T, Mucher, P, Radakovics, A, Marculescu, R, et al.. Anti-spike protein assays to determine SARS-CoV-2 antibody levels: a head-to-head comparison of five quantitative assays. Microbiol Spectr 2021;9:e0024721. https://doi.org/10.1128/Spectrum.00247-21.
Plebani, M, Padoan, A, Negrini, D, Carpinteri, B, Sciacovelli, L. Diagnostic performances and thresholds: the key to harmonization in serological SARS-CoV-2 assays? Clin Chim Acta 2020;509:1–7.41. https://doi.org/10.1016/j.cca.2020.05.050.
Villalta, D, Moratto, A, Salgarolo, V, Re, MD, Giacomello, R, Malipiero, G. New-generation quantitative immunoassays for SARS-CoV-2 antibody detection: need for harmonization. Ann Lab Med 2022;42:113–6. https://doi.org/10.3343/alm.2022.42.1.113.
Padoan, A, Dall’Olmo, L, Rocca, FD, Barbaro, F, Cosma, C, Basso, D, et al.. Antibody response to first and second dose of BNT162b2 in a cohort of characterized healthcare workers. Clin Chim Acta 2021;519:60–3. https://doi.org/10.1016/j.cca.2021.04.006.
Favresse, J, Gillot, C, Di Chiaro, L, Eucher, C, Elsen, M, Van Eeckhoudt, S, et al.. Neutralizing antibodies in COVID-19 patients and vaccine recipients after two doses of BNT162b2. Viruses 2021;13:1364. https://doi.org/10.3390/v13071364.
Pieri, M, Infantino, M, Manfredi, M, Nuccetelli, M, Grossi, V, Lari, B, et al.. Performance evaluation of four surrogate virus neutralization tests (sVNTs) in comparison to the in vivo gold standard test. Front Biosci (Landmark Ed) 2022;27:074. https://doi.org/10.31083/j.fbl2702074.
Zost, SJ, Gilchuk, P, Case, JB, Binshtein, E, Chen, RE, Nkolola, JP, et al.. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020;584:443–9. https://doi.org/10.1038/s41586-020-2548-6.
Lustig, Y, Sapir, E, Regev-Yochay, G, Cohen, C, Fluss, R, Olmer, L, et al.. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir Med 2021;9:999–1009. https://doi.org/10.1016/s2213-2600(21)00220-4.
Radbruch, A, Chang, HD. A long-term perspective on immunity to COVID. Nature 2021;595:359–60. https://doi.org/10.1038/d41586-021-01557-z.
Bergwerk, M, Gonen, T, Lustig, Y, Amit, S, Lipsitch, M, Cohen, C, et al.. COVID-19 breakthrough infections in vaccinated health care workers. N Engl J Med 2021;385:1474–84. https://doi.org/10.1056/nejmoa2109072.
Chang, HD, Radbruch, A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol 2021;51:1592–601. https://doi.org/10.1002/eji.202049012.
Amanna, IJ, Carlson, NE, Slifka, MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 2007;357:1903–15. https://doi.org/10.1056/nejmoa066092.

Auteurs

Maria Infantino (M)

Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy.

Mariangela Manfredi (M)

Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy.

Lorenzo Stacchini (L)

Department of Health Science, University of Florence, Florence, Italy.

Claudia Cosma (C)

Department of Health Science, University of Florence, Florence, Italy.

Valentina Grossi (V)

Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy.

Barbara Lari (B)

Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy.

Edda Russo (E)

Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.

Amedeo Amedei (A)

Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.

Maurizio Benucci (M)

Rheumatology Unit, S. Giovanni di Dio Hospital, Florence, Italy.

Francesca Veneziani (F)

Clinical Pathology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy.

Patrizia Casprini (P)

Clinical Pathology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy.

Cateno Mario Catalano (CM)

Department of Technical Health Services, Preventive Medicine, S. Giovanni di Dio Hospital, Florence, Italy.

Giuseppe Cirrincione (G)

Department of Technical Health Services, Preventive Medicine, S. Giovanni di Dio Hospital, Florence, Italy.

Guglielmo Bonaccorsi (G)

Department of Health Science, University of Florence, Florence, Italy.

Adolfo Pompetti (A)

SOC Clinical Assistance Governance, SOS Preventive Medicine Unit, S. Giovanni di Dio Hospital, Florence, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH