The role of neutralizing antibodies by sVNT after two doses of BNT162b2 mRNA vaccine in a cohort of Italian healthcare workers.
anti-SARS-CoV-2 antibodies
antibody kinetics
health care workers
immune response
neutralizing antibodies
surrogate virus neutralization test
vaccine
Journal
Clinical chemistry and laboratory medicine
ISSN: 1437-4331
Titre abrégé: Clin Chem Lab Med
Pays: Germany
ID NLM: 9806306
Informations de publication
Date de publication:
25 05 2022
25 05 2022
Historique:
received:
30
12
2021
accepted:
25
02
2022
pubmed:
19
3
2022
medline:
14
5
2022
entrez:
18
3
2022
Statut:
epublish
Résumé
Evaluating anti-SARS-CoV-2 antibody levels is a current priority to drive immunization, as well as to predict when a vaccine booster dose may be required and for which priority groups. The aim of our study was to investigate the kinetics of anti-SARS-CoV-2 Spike S1 protein IgG (anti-S1 IgG) antibodies and neutralizing antibodies (NAbs) in an Italian cohort of healthcare workers (HCWs), following the Pfizer/BNT162b2 mRNA vaccine, over a period of up to six months after the second dose. We enrolled 57 HCWs, without clinical history of COVID-19 infection. Fluoroenzyme-immunoassay was used for the quantitative anti-S1 IgG antibodies at different time points T1 (one month), T3 (three months) and T6 (six months) following the second vaccine shot. Simultaneously, a commercial surrogate virus neutralization test (sVNT) was used for the determination of NAbs, expressed as inhibition percentage (% IH). Median values of anti-S1 IgG antibodies decreased from T1 (1,452 BAU/mL) to T6 (104 BAU/mL) with a percent variation of 92.8% while the sVNT showed a percent variation of 34.3% for the same time frame. The decline in anti-S1 IgG antibodies from T1 to T6 was not accompanied by a loss of the neutralizing capacity of antibodies. In fact at T6 a neutralization percentage <20% IH was observed only in 3.51% of HCWs. Our findings reveal that the decrease of anti-S1 IgG levels do not correspond in parallel to a decrease of NAbs over time, which highlights the necessity of using both assays to assess vaccination effectiveness.
Identifiants
pubmed: 35303766
pii: cclm-2022-0170
doi: 10.1515/cclm-2022-0170
doi:
Substances chimiques
Antibodies, Neutralizing
0
Antibodies, Viral
0
COVID-19 Vaccines
0
Immunoglobulin G
0
Vaccines, Synthetic
0
mRNA Vaccines
0
BNT162 Vaccine
N38TVC63NU
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
934-940Informations de copyright
© 2022 Walter de Gruyter GmbH, Berlin/Boston.
Références
Zhu, N, Zhang, D, Wang, W, Li, X, Yang, B, Song, J, et al.. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–33. https://doi.org/10.1056/nejmoa2001017.
Mallah, SI, Ghorab, OK, Al-Salmi, S, Abdellatif, OS, Tharmaratnam, T, Iskandar, MA, et al.. COVID-19: breaking down a global health crisis. Ann Clin Microbiol Antimicrob 2021;20:35. https://doi.org/10.1186/s12941-021-00438-7.
Ray, D, Salvatore, M, Bhattacharyya, R, Wang, L, Du, J, Mohammed, S, et al.. Predictions, role of interventions and effects of a historic national lockdown in India’s response to the COVID-19 pandemic: data science call to arms. Harv Data Sci Rev 2020;2020(1 Suppl). https://doi.org/10.1162/99608f92.60e08ed5.
Polack, FP, Thomas, SJ, Kitchin, N, Absalon, J, Gurtman, A, Lockhart, S, et al.. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383:2603–15. https://doi.org/10.1056/nejmoa2034577.
Salute, M. Piano strategico nazionale dei vaccini per la prevenzione delle infezioni da SARS-CoV-2. https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2021&codLeg=78657&parte=1%20&serie=null [Accessed 7 Apr 2021].
Mateo-Urdiales, A, Del Manso, M, Andrianou, X, Spuri, M, D’Ancona, F, Filia, A, et al.. Initial impact of SARS-Cov-2 vaccination on healthcare workers in Italy – update on the 28th of March 2021. Vaccine 2021;39:4788–92. https://doi.org/10.1016/j.vaccine.2021.07.003.
Collier, AY, Yu, J, McMahan, K, Liu, J, Chandrashekar, A, Maron, JS, et al.. Differential kinetics of immune responses elicited by COVID-19 vaccines. N Engl J Med 2021;385:2010–12. https://doi.org/10.1056/NEJMc2115596.
Pegu, A, O’Connell, SE, Schmidt, SD, O’Dell, S, Talana, CA, Lai, L, et al.. Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science 2021;373:1372–7. https://doi.org/10.1126/science.abj4176.
Barouch, DH, Stephenson, KE, Sadoff, J, Yu, J, Chang, A, Gebre, M, et al.. Durable humoral and cellular immune responses eight months after Ad26.COV2.S vaccination. N Engl J Med 2021;385:951–3. https://doi.org/10.1056/nejmc2108829.
Khoury, DS, Cromer, D, Reynaldi, A, Schlub, TE, Wheatley, AK, Juno, JA, et al.. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med 2021;27:1205–11. https://doi.org/10.1038/s41591-021-01377-8.
Roozendaal, R, Solforosi, L, Stieh, DJ, Serroyen, J, Straetemans, R, Dari, A, et al.. SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques. Nat Commun 2021;12:5877. https://doi.org/10.1038/s41467-021-26117-x.
Muir, L, Jaffer, A, Rees-Spear, C, Gopalan, V, Chang, FY, Fernando, R, et al.. Neutralizing antibody responses after SARS-CoV-2 infection in end-stage kidney disease and protection against reinfection. Kidney Int Rep 2021;6:1799–809. https://doi.org/10.1016/j.ekir.2021.03.902.
Earle, KA, Ambrosino, DM, Fiore-Gartland, A, Goldblatt, D, Gilbert, PB, Siber, GR, et al.. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021;39:4423–8. https://doi.org/10.1016/j.vaccine.2021.05.063.
Feng, S, Phillips, DJ, White, T, Sayal, H, Aley, PK, Bibi, S, et al.. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med 2021;27:2032–40. https://doi.org/10.1038/s41591-021-01540-1.
Jackson, LA, Anderson, EJ, Rouphael, NG, Roberts, PC, Makhene, M, Coler, RN, et al.. An mRNA vaccine against SARS-CoV-2 – preliminary report. N Engl J Med 2020;383:1920–31. https://doi.org/10.1056/nejmoa2022483.
Shah, M, Ahmad, B, Choi, S, Woo, HG. Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Comput Struct Biotechnol J 2020;18:3402–14. https://doi.org/10.1016/j.csbj.2020.11.002.
Montesinos, I, Dahma, H, Wolff, F, Dauby, N, Delaunoy, S, Wuyts, M, et al.. Neutralizing antibody responses following natural SARS-CoV-2 infection: dynamics and correlation with commercial serologic tests. J Clin Virol 2021;144:104988. https://doi.org/10.1016/j.jcv.2021.104988.
Wang, Z, Muecksch, F, Schaefer-Babajew, D, Finkin, S, Viant, C, Gaebler, C, et al.. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 2021;595:426–31. https://doi.org/10.1038/s41586-021-03696-9.
Borobia, AM, Carcas, AJ, Perez-Olmeda, M, Castano, L, Bertran, MJ, Garcia-Perez, J, et al.. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 2021;398:121–30. https://doi.org/10.1016/S0140-6736(21)01420-3.
Walsh, EE, Frenck, RWJr, Falsey, AR, Kitchin, N, Absalon, J, Gurtman, A, et al.. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N Engl J Med 2020;383:2439–50. https://doi.org/10.1056/nejmoa2027906.
Terpos, E, Trougakos, IP, Apostolakou, F, Charitaki, I, Sklirou, AD, Mavrianou, N, et al.. Age-dependent and gender-dependent antibody responses against SARS-CoV-2 in health workers and octogenarians after vaccination with the BNT162b2 mRNA vaccine. Am J Hematol 2021;96:E257–9. https://doi.org/10.1002/ajh.26185.
Turner, JS, O’Halloran, JA, Kalaidina, E, Kim, W, Schmitz, AJ, Zhou, JQ, et al.. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021;596:109–13. https://doi.org/10.1038/s41586-021-03738-2.
Terpos, E, Trougakos, IP, Karalis, V, Ntanasis-Stathopoulos, I, Gumeni, S, Apostolakou, F, et al.. Kinetics of anti-SARS-CoV-2 antibody responses three months post complete vaccination with BNT162b2; a prospective study in 283 health workers. Cells 2021;10:1942. https://doi.org/10.3390/cells10081942.
Schulte-Pelkum, J. Comment on Favresse et al. persistence of anti-SARS-CoV-2 antibodies depends on the analytical kit: a report for up to 10 months after infection. Microorganisms 2021, 9, 556. Microorganisms 2021;9:178. https://doi.org/10.3390/microorganisms9081786.
Dolscheid-Pommerich, R, Bartok, E, Renn, M, Kümmerer, BM, Schulte, B, Schmithausen, RM, et al.. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity. J Med Virol 2022;94:388–92. https://doi.org/10.1002/jmv.27287.
ISS Rn. Impatto della vaccinazione COVID-19 sul rischio di infezione da SARS-CoV-2 e successivo ricovero e decesso in Italia (27.12.2020 – 29.08.2021) Valutazione combinata dei dati dell’anagrafe nazionale vaccini e del sistema di sorveglianza integrata COVID-19.
WHO. WHO target product profiles for COVID-19 vaccines. Geneva: World Health Organization; 2020.
Favresse, J, Bayart, JL, Mullier, F, Elsen, M, Eucher, C, Van Eeckhoudt, S, et al.. Antibody titres decline three-month post-vaccination with BNT162b2. Emerg Microb Infect 2021;10:1495–8. https://doi.org/10.1080/22221751.2021.1953403.
Ebinger, JE, Fert-Bober, J, Printsev, I, Wu, M, Sun, N, Prostko, JC, et al.. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat Med 2021;27:981–4. https://doi.org/10.1038/s41591-021-01325-6.
Favresse, J, Bayart, JL, Mullier, F, Dogne, JM, Closset, M, Douxfils, J. Early antibody response in health-care professionals after two doses of SARS-CoV-2 mRNA vaccine (BNT162b2). Clin Microbiol Infect 2021;27:1351 e5–7. https://doi.org/10.1016/j.cmi.2021.05.004.
Padoan, A, Dall’Olmo, L, Rocca, FD, Barbaro, F, Cosma, C, Basso, D, et al.. Antibody response to first and second dose of BNT162b2 in a cohort of characterized healthcare workers. Clin Chim Acta 2021;519:60–3. https://doi.org/10.1016/j.cca.2021.04.006.
Tre-Hardy, M, Cupaiolo, R, Papleux, E, Wilmet, A, Horeanga, A, Antoine-Moussiaux, T, et al.. Reactogenicity, safety and antibody response, after one and two doses of mRNA-1273 in seronegative and seropositive healthcare workers. J Infect 2021;83:237–79. https://doi.org/10.1016/j.jinf.2021.03.025.
Salvagno, GL, Henry, BM, di Piazza, G, Pighi, L, De Nitto, S, Bragantini, D, et al.. Anti-SARS-CoV-2 receptor-binding domain total antibodies response in seropositive and seronegative healthcare workers undergoing COVID-19 mRNA BNT162b2 vaccination. Diagnostics 2021;11:832. https://doi.org/10.3390/diagnostics11050832.
Nuccetelli, M, Pieri, M, Grelli, S, Ciotti, M, Miano, R, Andreoni, M, et al.. SARS-CoV-2 infection serology: a useful tool to overcome lockdown? Cell Death Dis 2020;6:38. https://doi.org/10.1038/s41420-020-0275-2.
Matusali, G, Colavita, F, Lapa, D, Meschi, S, Bordi, L, Piselli, P, et al.. SARS-CoV-2 serum neutralization assay: a traditional tool for a brand-new virus. Viruses 2021;13. https://doi.org/10.3390/v13040655.
Malipiero, G, D’Agaro, P, Segat, L, Moratto, A, Villalta, D. Long-term decay of anti-RBD IgG titers after BNT162b2 vaccination is not mirrored by loss of neutralizing bioactivity against SARS-CoV-2. Clin Chim Acta 2022;524:11–7. https://doi.org/10.1016/j.cca.2021.11.023.
Padoan, A, Cosma, C, Bonfante, F, Della Rocca, F, Barbaro, F, Santarossa, C, et al.. Neutralizing antibody titers six months after comirnaty vaccination: kinetics and comparison with SARS-CoV-2 immunoassays. Clin Chem Lab Med 2021;60:456–63. https://doi.org/10.1515/cclm-2021-1247.
Salvagno, GL, Henry, BM, Pighi, L, De Nitto, S, Gianfilippi, G, Lippi, G. The pronounced decline of anti-SARS-CoV-2 spike trimeric IgG and RBD IgG in baseline seronegative individuals six months after BNT162b2 vaccination is consistent with the need for vaccine boosters. Clin Chem Lab Med 2021;60:e29–31. https://doi.org/10.1515/cclm-2021-1184.
Benning, L, Morath, C, Bartenschlager, M, Reineke, M, Töllner, M, Nusshag, C, et al.. Neutralizing antibody activity against the B.1.617.2 (delta) variant eight months after two-dose vaccination with BNT162b2 in health care workers. Clin Microbiol Infect 2022 Feb 3. https://doi.org/10.1016/j.cmi.2022.01.011 [Epub ahead of print].
Evans, JP, Zeng, C, Carlin, C, Lozanski, G, Saif, LJ, Oltz, EM, et al.. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci Transl Med 2022 Feb 15:eabn8057. https://doi.org/10.1126/scitranslmed.abn8057 [Epub ahead of print].
Lippi, G, Plebani, M. Not all SARS-CoV-2 IgG and neutralizing antibody assays are created equal. Clin Chim Acta 2022;526:81–2. https://doi.org/10.1016/j.cca.2021.12.020.
Infantino, M, Pieri, M, Nuccetelli, M, Grossi, V, Lari, B, Tomassetti, F, et al.. The WHO International Standard for COVID-19 serological tests: towards harmonization of anti-spike assays. Int Immunopharm 2021;100:108095. https://doi.org/10.1016/j.intimp.2021.108095.
Perkmann, T, Perkmann-Nagele, N, Koller, T, Mucher, P, Radakovics, A, Marculescu, R, et al.. Anti-spike protein assays to determine SARS-CoV-2 antibody levels: a head-to-head comparison of five quantitative assays. Microbiol Spectr 2021;9:e0024721. https://doi.org/10.1128/Spectrum.00247-21.
Plebani, M, Padoan, A, Negrini, D, Carpinteri, B, Sciacovelli, L. Diagnostic performances and thresholds: the key to harmonization in serological SARS-CoV-2 assays? Clin Chim Acta 2020;509:1–7.41. https://doi.org/10.1016/j.cca.2020.05.050.
Villalta, D, Moratto, A, Salgarolo, V, Re, MD, Giacomello, R, Malipiero, G. New-generation quantitative immunoassays for SARS-CoV-2 antibody detection: need for harmonization. Ann Lab Med 2022;42:113–6. https://doi.org/10.3343/alm.2022.42.1.113.
Padoan, A, Dall’Olmo, L, Rocca, FD, Barbaro, F, Cosma, C, Basso, D, et al.. Antibody response to first and second dose of BNT162b2 in a cohort of characterized healthcare workers. Clin Chim Acta 2021;519:60–3. https://doi.org/10.1016/j.cca.2021.04.006.
Favresse, J, Gillot, C, Di Chiaro, L, Eucher, C, Elsen, M, Van Eeckhoudt, S, et al.. Neutralizing antibodies in COVID-19 patients and vaccine recipients after two doses of BNT162b2. Viruses 2021;13:1364. https://doi.org/10.3390/v13071364.
Pieri, M, Infantino, M, Manfredi, M, Nuccetelli, M, Grossi, V, Lari, B, et al.. Performance evaluation of four surrogate virus neutralization tests (sVNTs) in comparison to the in vivo gold standard test. Front Biosci (Landmark Ed) 2022;27:074. https://doi.org/10.31083/j.fbl2702074.
Zost, SJ, Gilchuk, P, Case, JB, Binshtein, E, Chen, RE, Nkolola, JP, et al.. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020;584:443–9. https://doi.org/10.1038/s41586-020-2548-6.
Lustig, Y, Sapir, E, Regev-Yochay, G, Cohen, C, Fluss, R, Olmer, L, et al.. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir Med 2021;9:999–1009. https://doi.org/10.1016/s2213-2600(21)00220-4.
Radbruch, A, Chang, HD. A long-term perspective on immunity to COVID. Nature 2021;595:359–60. https://doi.org/10.1038/d41586-021-01557-z.
Bergwerk, M, Gonen, T, Lustig, Y, Amit, S, Lipsitch, M, Cohen, C, et al.. COVID-19 breakthrough infections in vaccinated health care workers. N Engl J Med 2021;385:1474–84. https://doi.org/10.1056/nejmoa2109072.
Chang, HD, Radbruch, A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol 2021;51:1592–601. https://doi.org/10.1002/eji.202049012.
Amanna, IJ, Carlson, NE, Slifka, MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 2007;357:1903–15. https://doi.org/10.1056/nejmoa066092.