Strain Engineering: A Boosting Strategy for Photocatalysis.

d-band model lattice strain photocatalysis strain engineering

Journal

Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358

Informations de publication

Date de publication:
Jul 2022
Historique:
revised: 02 03 2022
received: 26 01 2022
pubmed: 20 3 2022
medline: 20 3 2022
entrez: 19 3 2022
Statut: ppublish

Résumé

Whilst the photocatalytic technique is considered to be one of the most significant routes to address the energy crisis and global environmental challenges, the solar-to-chemical conversion efficiency is still far from satisfying practical industrial requirements, which can be traced to the suboptimal bandgap and electronic structure of photocatalysts. Strain engineering is a universal scheme that can finely tailor the bandgap and electronic structure of materials, hence supplying a novel avenue to boost their photocatalytic performance. Accordingly, to explore promising directions for certain breakthroughs in strained photocatalysts, an overview on the recent advances of strain engineering from the basics of strain effect, creations of strained materials, as well as characterizations and simulations of strain level is provided. Besides, the potential applications of strain engineering in photocatalysis are summarized, and a vision for the future controllable-electronic-structure photocatalysts by strain engineering is also given. Finally, perspectives on the challenges for future strain-promoted photocatalysis are discussed, placing emphasis on the creation and decoupling of strain effect, and the modification of theoretical frameworks.

Identifiants

pubmed: 35304927
doi: 10.1002/adma.202200868
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200868

Subventions

Organisme : National Key Projects for Fundamental Research and Development of China
ID : 2018YFB1502002
Organisme : National Natural Science Foundation of China
ID : 51825205
Organisme : National Natural Science Foundation of China
ID : 52120105002
Organisme : National Natural Science Foundation of China
ID : 21902168
Organisme : National Natural Science Foundation of China
ID : 22102202
Organisme : National Natural Science Foundation of China
ID : 22088102
Organisme : Beijing Natural Science Foundation
ID : 2191002
Organisme : DNL Cooperation Fund, CAS
ID : DNL202016
Organisme : CAS Project for Young Scientists in Basic Research
ID : YSBR-004
Organisme : Strategic Priority Research Program of the Chinese Academy of Sciences
ID : XDB17000000
Organisme : China Postdoctoral Science Foundation
ID : BX2021323
Organisme : Youth Innovation Promotion Association of the CAS

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

a) P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem. 2010, 2, 454;
b) X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. D. Lou, B. Y. Xia, Science 2019, 366, 850.
a) K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom, Science 2004, 306, 1005;
b) J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, D. G. Schlom, Nature 2004, 430, 758.
B. Yan, J. Huang, L. Han, L. Gong, L. Li, J. N. Israelachvili, H. Zeng, ACS Nano 2017, 11, 11074.
a) S. Hao, L. Cui, D. Jiang, X. Han, Y. Ren, J. Jiang, Y. Liu, Z. Liu, S. Mao, Y. Wang, Y. Li, X. Ren, X. Ding, S. Wang, C. Yu, X. Shi, M. Du, F. Yang, Y. Zheng, Z. Zhang, X. Li, D. E. Brown, J. Li, Science 2013, 339, 1191;
b) J. Zhang, Y. Liu, L. Cui, S. Hao, D. Jiang, K. Yu, S. Mao, Y. Ren, H. Yang, Adv. Mater. 2019, 32, 1904387.
a) J. Shi, Nature 2020, 577, 171;
b) V. J. Parks, A. J. Durelli, Exp. Mech. 1967, 7, 279.
M. Luo, S. Guo, Nat. Rev. Mater. 2017, 2, 17059.
P. Moseley, W. A. Curtin, Nano Lett. 2015, 15, 4089.
T. X. T. Sayle, M. Cantoni, U. M. Bhatta, S. C. Parker, S. R. Hall, G. Möbus, M. Molinari, D. Reid, S. Seal, D. C. Sayle, Chem. Mater. 2012, 24, 1811.
H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, X. Zheng, Nat. Mater. 2016, 15, 364.
a) B. T. Sneed, A. P. Young, C.-K. Tsung, Nanoscale 2015, 7, 12248;
b) J. Feng, X. Qian, C.-W. Huang, J. Li, Nat. Photonics 2012, 6, 866;
c) B. You, M. T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng, H. Li, Adv. Mater. 2019, 31, 1807001;
d) A. Chen, Q. Su, H. Han, E. Enriquez, Q. Jia, Adv. Mater. 2019, 31, 1803241.
Z. Xia, S. Guo, Chem. Soc. Rev. 2019, 48, 3265.
a) J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater. 2016, 6, 1502313;
b) H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F. B. Prinz, J. K. Nørskov, Y. Cui, Science 2016, 354, 1031;
c) Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao, C. Zhong, J. Zhang, X. Han, W. Hu, Y. Zhang, K. Zaghib, Y. Wang, Y. Deng, Adv. Mater. 2020, 32, 2000231;
d) H. Mistry, A. S. Varela, S. Kühl, P. Strasser, B. R. Cuenya, Nat. Rev. Mater. 2016, 1, 16009;
e) F. Podjaski, D. Weber, S. Zhang, L. Diehl, R. Eger, V. Duppel, E. Alarcón-Lladó, G. Richter, F. Haase, A. Fontcuberta i Morral, C. Scheu, B. V. Lotsch, Nat. Catal. 2020, 3, 55;
f) K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen, Y.-R. Lu, T.-S. Chan, F. M. F. de Groot, Y. Tan, Nat. Commun. 2021, 12, 1687;
g) R. P. Jansonius, P. A. Schauer, D. J. Dvorak, B. P. MacLeod, D. K. Fork, C. P. Berlinguette, Angew. Chem., Int. Ed. 2020, 59, 12192;
h) S. Guo, S. Zhang, S. Sun, Angew. Chem., Int. Ed. 2013, 52, 8526;
i) Y. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F. Teng, L.-Z. Wu, C.-H. Tung, D. O'Hare, T. Zhang, Adv. Mater. 2017, 29, 1703828.
a) E.-M. Choi, A. D. Bernardo, B. Zhu, P. Lu, H. Alpern, K. H. L. Zhang, T. Shapira, J. Feighan, X. Sun, J. Robinson, Y. Paltiel, O. Millo, H. Wang, Q. Jia, J. L. MacManus-Driscoll, Sci. Adv. 2019, 5, eaav5532;
b) I. Zeljkovic, D. Walkup, B. A. Assaf, K. L. Scipioni, R. Sankar, F. Chou, V. Madhavan, Nat. Nanotechnol. 2015, 10, 849;
c) C. Liu, X. Song, Q. Li, Y. Ma, C. Chen, Phys. Rev. Lett. 2020, 124, 147001.
a) D. J. Paul, Semicond. Sci. Technol. 2004, 19, R75;
b) M. Ieong, B. Doris, J. Kedzierski, K. Rim, M. Yang, Science 2004, 306, 2057;
c) W. Cai, J. Wang, Y. He, S. Liu, Q. Xiong, Z. Liu, Q. Zhang, Nano-Micro Lett. 2021, 13, 74.
a) S. Bai, L. Yang, C. Wang, Y. Lin, J. Lu, J. Jiang, Y. Xiong, Angew. Chem., Int. Ed. 2015, 54, 14810;
b) H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 2012, 24, 229;
c) J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Adv. Funct. Mater. 2018, 28, 1801983.
X.-B. Li, C.-H. Tung, L.-Z. Wu, Nat. Rev. Chem. 2018, 2, 160.
a) A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev. 2012, 112, 1555;
b) A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253;
c) G. Zhang, G. Liu, L. Wang, J. T. S. Irvine, Chem. Soc. Rev. 2016, 45, 5951;
d) Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109;
e) J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900.
a) S. Wang, X. Luo, X. Zhou, Y. Zhu, X. Chi, W. Chen, K. Wu, Z. Liu, S. Y. Quek, G. Xu, J. Am. Chem. Soc. 2017, 139, 15414;
b) X. Han, H. M. Stewart, S. A. Shevlin, C. R. A. Catlow, Z. X. Guo, Nano Lett. 2014, 14, 4607;
c) I. Shown, S. Samireddi, Y.-C. Chang, R. Putikam, P.-H. Chang, A. Sabbah, F.-Y. Fu, W.-F. Chen, C.-I. Wu, T.-Y. Yu, P.-W. Chung, M. C. Lin, L.-C. Chen, K.-H. Chen, Nat. Commun. 2018, 9, 169.
a) Y. Chen, Y. Lei, Y. Li, Y. Yu, J. Cai, M.-H. Chiu, R. Rao, Y. Gu, C. Wang, W. Choi, H. Hu, C. Wang, Y. Li, J. Song, J. Zhang, B. Qi, M. Lin, Z. Zhang, A. E. Islam, B. Maruyama, S. Dayeh, L.-J. Li, K. Yang, Y.-H. Lo, S. Xu, Nature 2020, 577, 209;
b) A. Janotti, D. Steiauf, C. G. Van de Walle, Phys. Rev. B 2011, 84, 201304.
Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2019, 31, 1806482.
a) D. Gu, X. Tao, H. Chen, W. Zhu, Y. Ouyang, Q. Peng, Nanoscale 2019, 11, 2335;
b) B. Huang, Y. Liu, Q. Pang, X. Zhang, H. Wang, P. K. Shen, J. Mater. Chem. A 2020, 8, 22251;
c) S. Sun, F. Meng, Y. Xu, J. He, Y. Ni, H. Wang, J. Mater. Chem. A 2019, 7, 7791;
d) Z. Xu, W. Hao, Q. Zhang, Z. Fu, H. Feng, Y. Du, S. Dou, J. Phys. Chem. C 2016, 120, 8589;
e) M. E. Kilic, K.-R. Lee, Phys. Rev. Mater. 2021, 5, 065404;
f) X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z. L. Wang, Nano Energy 2015, 13, 414;
g) L. T. Quynh, C. N. Van, Y. Bitla, J.-W. Chen, T. H. Do, W.-Y. Tzeng, S.-C. Liao, K.-A. Tsai, Y.-C. Chen, C.-L. Wu, C.-H. Lai, C.-W. Luo, Y.-J. Hsu, Y.-H. Chu, Adv. Energy Mater. 2016, 6, 1600686;
h) H. L. Zhuang, R. G. Hennig, Chem. Mater. 2013, 25, 3232;
i) D. Dimple, N. Jena, A. Rawat, A. De Sarkar, J. Mater. Chem. A 2017, 5, 22265;
j) B. Sa, Y.-L. Li, J. Qi, R. Ahuja, Z. Sun, J. Phys. Chem. C 2014, 118, 26560;
k) L. Lv, Y. Shen, X. Gao, J. Liu, S. Wu, Y. Ma, X. Wang, D. Gong, Z. Zhou, Appl. Surf. Sci. 2021, 546, 149066;
l) S.-H. Li, N. Zhang, X. Xie, R. Luque, Y.-J. Xu, Angew. Chem., Int. Ed. 2018, 57, 13082;
m) S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, Z. Wang, Y. Weng, T. Zhang, Angew. Chem., Int. Ed. 2021, 60, 2554;
n) X. Li, Z. Wang, L. Wang, Small Sci. 2021, 1, 2000074.
J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Natl. Acad. Sci. USA 2011, 108, 937.
a) J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, Phys. Rev. Lett. 2004, 93, 156801;
b) A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Nørskov, J. Mol. Catal. A: Chem. 1997, 115, 421;
c) B. Hammer, J. K. Nørskov, Surf. Sci. 1995, 343, 211.
A. Nilsson, L. G. M. Pettersson, B. Hammer, T. Bligaard, C. H. Christensen, J. K. Nørskov, Catal. Lett. 2005, 100, 111.
M. Mavrikakis, B. Hammer, J. K. Nørskov, Phys. Rev. Lett. 1998, 81, 2819.
S. Schnur, A. Groß, Phys. Rev. B 2010, 81, 033402.
D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sánchez, J. Fontcuberta, Nat. Commun. 2012, 3, 1189.
J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, H. N. Lee, J. Am. Chem. Soc. 2016, 138, 2488.
W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Nat. Energy 2019, 4, 115.
X. Lü, Y. Wang, C. C. Stoumpos, Q. Hu, X. Guo, H. Chen, L. Yang, J. S. Smith, W. Yang, Y. Zhao, H. Xu, M. G. Kanatzidis, Q. Jia, Adv. Mater. 2016, 28, 8663.
J. W. Lee, S. C. Shin, S. K. Kim, Appl. Phys. Lett. 2003, 82, 2458.
J. Ryu, S. Priya, A. V. Carazo, K. Uchino, H.-E. Kim, J. Am. Ceram. Soc. 2001, 84, 2905.
S. Xie, S.-I. Choi, X. Xia, Y. Xia, Curr. Opin. Chem. Eng. 2013, 2, 142.
R. C. Cammarata, Prog. Surf. Sci. 1994, 46, 1.
S. Deshpande, S. Patil, S. V. Kuchibhatla, S. Seal, Appl. Phys. Lett. 2005, 87, 133113.
M. Behrens, F. Studt, I. Kasatkin, S. Kuhl, M. Havecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlogl, Science 2012, 336, 893.
a) R. Schiedung, I. Steinbach, F. Varnik, Phys. Rev. B 2018, 97, 035410;
b) W. Qi, M. Wang, J. Nanopart. Res. 2005, 7, 51.
X. Zhang, G. Lu, J. Phys. Chem. Lett. 2014, 5, 292.
J. Wu, L. Qi, H. You, A. Gross, J. Li, H. Yang, J. Am. Chem. Soc. 2012, 134, 11880.
H. Feng, Z. Xu, L. Wang, Y. Yu, D. Mitchell, D. Cui, X. Xu, J. Shi, T. Sannomiya, Y. Du, W. Hao, S. X. Dou, ACS Appl. Mater. Interfaces 2015, 7, 27592.
a) S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 2018, 53, 296;
b) Y. Zhang, D. Yao, B. Xia, H. Xu, Y. Tang, K. Davey, J. Ran, S.-Z. Qiao, Small Sci. 2021, 1, 2000052.
a) R. Chattot, T. Asset, P. Bordet, J. Drnec, L. Dubau, F. Maillard, ACS Catal. 2017, 7, 398;
b) X. Cao, A. Huang, C. Liang, H.-C. Chen, T. Han, R. Lin, Q. Peng, Z. Zhuang, R. Shen, H. M. Chen, Y. Yu, C. Chen, Y. Li, J. Am. Chem. Soc. 2022, 144, 3386.
R. Chattot, O. L. Bacq, V. Beermann, S. Kühl, J. Herranz, S. Henning, L. Kühn, T. Asset, L. Guétaz, G. Renou, J. Drnec, P. Bordet, A. Pasturel, A. Eychmüller, T. J. Schmidt, P. Strasser, L. Dubau, F. Maillard, Nat. Mater. 2018, 17, 827.
C. R. Fell, D. Qian, K. J. Carroll, M. Chi, J. L. Jones, Y. S. Meng, Chem. Mater. 2013, 25, 1621.
W. Ni, T. Wang, P. A. Schouwink, Y.-C. Chuang, H. M. Chen, X. Hu, Angew. Chem., Int. Ed. 2020, 59, 10797.
a) W. Zhang, L. Cai, S. Cao, L. Qiao, Y. Zeng, Z. Zhu, Z. Lv, H. Xia, L. Zhong, H. Zhang, X. Ge, J. Wei, S. Xi, Y. Du, S. Li, X. Chen, Adv. Mater. 2019, 31, 1906156;
b) I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlögl, Angew. Chem., Int. Ed. 2007, 46, 7324.
S.-Y. Choi, S.-D. Kim, M. Choi, H.-S. Lee, J. Ryu, N. Shibata, T. Mizoguchi, E. Tochigi, T. Yamamoto, S.-J. L. Kang, Y. Ikuhara, Nano Lett. 2015, 15, 4129.
K. Qian, Y. Yan, S. Xi, T. Wei, Y. Dai, X. Yan, H. Kobayashi, S. Wang, W. Liu, R. Li, Small 2021, 17, 2102970.
S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Energy Mater. 2020, 10, 1901973.
W. J. Jo, H. J. Kang, K.-J. Kong, Y. S. Lee, H. Park, Y. Lee, T. Buonassisi, K. K. Gleason, J. S. Lee, Proc. Natl. Acad. Sci. USA 2015, 112, 13774.
H. Guo, S. Dong, P. D. Rack, J. D. Budai, C. Beekman, Z. Gai, W. Siemons, C. M. Gonzalez, R. Timilsina, A. T. Wong, A. Herklotz, P. C. Snijders, E. Dagotto, T. Z. Ward, Phys. Rev. Lett. 2015, 114, 256801.
X. Xu, T. Liang, D. Kong, B. Wang, L. Zhi, Mater. Today Nano 2021, 14, 100111.
K. He, C. Poole, K. F. Mak, J. Shan, Nano Lett. 2013, 13, 2931.
Z. Li, Y. Lv, L. Ren, J. Li, L. Kong, Y. Zeng, Q. Tao, R. Wu, H. Ma, B. Zhao, D. Wang, W. Dang, K. Chen, L. Liao, X. Duan, X. Duan, Y. Liu, Nat. Commun. 2020, 11, 1151.
M. Zeng, J. Liu, L. Zhou, R. G. Mendes, Y. Dong, M.-Y. Zhang, Z.-H. Cui, Z. Cai, Z. Zhang, D. Zhu, T. Yang, X. Li, J. Wang, L. Zhao, G. Chen, H. Jiang, M. H. Rümmeli, H. Zhou, L. Fu, Nat. Mater. 2020, 19, 528.
F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, O. G. Schmidt, Nano Lett. 2010, 10, 3453.
S. Kaur, A. Kumar, S. Srivastava, K. Tankeshwar, R. Pandey, J. Phys. Chem. C 2018, 122, 26032.
J. Di, P. Song, C. Zhu, C. Chen, J. Xiong, M. Duan, R. Long, W. Zhou, M. Xu, L. Kang, B. Lin, D. Liu, S. Chen, C. Liu, H. Li, Y. Zhao, S. Li, Q. Yan, L. Song, Z. Liu, ACS Mater. Lett. 2020, 2, 1025.
Y. Liu, D. Zhang, Y. Shang, W. Zang, M. Li, RSC Adv. 2015, 5, 104785.
Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito, J. Han, X. Guo, Z. Tang, T. Fujita, A. Hirata, M. W. Chen, Adv. Mater. 2014, 26, 8023.
B. Liu, Q. Liao, X. Zhang, J. Du, Y. Ou, J. Xiao, Z. Kang, Z. Zhang, Y. Zhang, ACS Nano 2019, 13, 9057.
M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard, Y. Huang, X. Duan, Science 2016, 354, 1414.
X. Lu, L. Au, J. McLellan, Z.-Y. Li, M. Marquez, Y. Xia, Nano Lett. 2007, 7, 1764.
L. Gan, R. Yu, J. Luo, Z. Cheng, J. Zhu, J. Phys. Chem. Lett. 2012, 3, 934.
X. Yu, Y. Wu, J. Cui, Y. Ran, W. Lin, L.-M. Liu, J. Ye, Y. Zhang, A. Cabot, Chem. Mater. 2020, 32, 2774.
J.-T. Yang, C. Ma, C. Ge, Q.-H. Zhang, J.-Y. Du, J.-K. Li, H.-Y. Huang, M. He, C. Wang, S. Meng, L. Gu, H.-B. Lu, G.-Z. Yang, K.-J. Jin, J. Mater. Chem. C 2017, 5, 11694.
X. Wang, S.-I. Choi, L. T. Roling, M. Luo, C. Ma, L. Zhang, M. Chi, J. Liu, Z. Xie, J. A. Herron, M. Mavrikakis, Y. Xia, Nat. Commun. 2015, 6, 7594.
J. Zhao, X. Chen, B. Chen, X. Luo, T. Sun, W. Zhang, C. Wang, J. Lin, D. Su, X. Qiao, F. Wang, Adv. Funct. Mater. 2019, 29, 1903295.
F. You, J. Wan, J. Qi, D. Mao, N. Yang, Q. Zhang, L. Gu, D. Wang, Angew. Chem., Int. Ed. 2020, 132, 731.
P. J. Withers, M. Preuss, A. Steuwer, J. W. L. Pang, J. Appl. Crystallogr. 2007, 40, 891.
a) A. Tabib, W. Bouslama, B. Sieber, A. Addad, H. Elhouichet, M. Férid, R. Boukherroub, Appl. Surf. Sci. 2017, 396, 1528;
b) G. K. Williamson, W. H. Hall, Acta Metall. 1953, 1, 22.
A. K. Zak, W. H. A. Majid, M. E. Abrishami, R. Yousefi, Solid State Sci. 2011, 13, 251.
J. M. Hartmann, A. Abbadie, S. Favier, J. Appl. Phys. 2011, 110, 083529.
G. E. Bacon, in X-Ray and Neutron Diffraction (Ed: G. E. Bacon), Pergamon Press, Oxford, UK 1966, p. 82.
A. W. T. Gregg, J. N. Hendriks, C. M. Wensrich, A. Wills, A. S. Tremsin, V. Luzin, T. Shinohara, O. Kirstein, M. H. Meylan, E. H. Kisi, Phys. Rev. Appl. 2018, 10, 064034.
G.-C. Wang, T.-M. Lu, J. Appl. Phys. 2019, 125, 082401.
T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, A. C. Ferrari, Phys. Rev. B 2009, 79, 205433.
J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Novoselov, C. Casiraghi, Nano Lett. 2012, 12, 617.
R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, F. Gozzo, M. Garcia-Hernandez, M. A. Garcia, R. Cingolani, P. D. Cozzoli, J. Am. Chem. Soc. 2010, 132, 2437.
M. J. Hÿtch, T. Plamann, Ultramicroscopy 2001, 87, 199.
B. Goris, S. Bals, W. Van den Broek, E. Carbó-Argibay, S. Gómez-Graña, L. M. Liz-Marzán, G. Van Tendeloo, Nat. Mater. 2012, 11, 930.
a) A. Mills, S. L. Hunte, J. Photochem. Photobiol., A 1997, 108, 1;
b) J.-M. Herrmann, Catal. Today 1999, 53, 115.
A. Visibile, R. B. Wang, A. Vertova, S. Rondinini, A. Minguzzi, E. Ahlberg, M. Busch, Chem. Mater. 2019, 31, 4787.
X. Ma, Y. Dai, M. Guo, B. Huang, ChemPhysChem 2012, 13, 2304.
I. Bhat, in Wide Bandgap Semiconductor Power Devices (Ed: B. J. Baliga), Elsevier, San Diego, CA 2019, Ch. 3.
T. Jing, Y. Dai, X. Ma, W. Wei, B. Huang, J. Phys. Chem. C 2015, 119, 27900.
R. Fei, L. Yang, Nano Lett. 2014, 14, 2884.
a) L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang, X. Zhang, J.-J. Zou, Z. L. Wang, Adv. Energy Mater. 2020, 10, 2000214;
b) C.-Y. Tu, J. M. Wu, Nano Energy 2021, 87, 106131;
c) Z. L. Wang, Adv. Mater. 2012, 24, 4632.
a) C. Wang, Y. Liu, J. Yuan, P. Wu, W. Zhou, J. Energy Chem. 2020, 41, 107;
b) H. L. Zhuang, R. G. Hennig, Phys. Rev. B 2013, 88, 115314.
a) Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, J. Wang, Chem. Mater. 2016, 28, 4390;
b) J. Yuan, C. Wang, Y. Liu, P. Wu, W. Zhou, J. Phys. Chem. C 2019, 123, 526.
a) R. Shi, Y. Zhao, G. I. N. Waterhouse, S. Zhang, T. Zhang, ACS Catal. 2019, 9, 9739;
b) S. Zhang, Y. Zhao, R. Shi, G. I. N. Waterhouse, T. Zhang, EnergyChem 2019, 1, 100013.
C. Xu, P. R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Chem. Soc. Rev. 2019, 48, 3868.
Q. Zhao, M. Ji, H. Qian, B. Dai, L. Weng, J. Gui, J. Zhang, M. Ouyang, H. Zhu, Adv. Mater. 2014, 26, 1387.
B. Ji, Y. E. Panfil, N. Waiskopf, S. Remennik, I. Popov, U. Banin, Nat. Commun. 2019, 10, 2.
Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang, Nat. Rev. Chem. 2020, 4, 243.
X. Lü, W. Yang, Z. Quan, T. Lin, L. Bai, L. Wang, F. Huang, Y. Zhao, J. Am. Chem. Soc. 2014, 136, 419.
Q. Wang, K. Edalati, Y. Koganemaru, S. Nakamura, M. Watanabe, T. Ishihara, Z. Horita, J. Mater. Chem. A 2020, 8, 3643.
K. Qi, X. Cui, L. Gu, S. Yu, X. Fan, M. Luo, S. Xu, N. Li, L. Zheng, Q. Zhang, J. Ma, Y. Gong, F. Lv, K. Wang, H. Huang, W. Zhang, S. Guo, W. Zheng, P. Liu, Nat. Commun. 2019, 10, 5231.
X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Nanoscale 2013, 5, 3601.
U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, N. A. Spaldin, Phys. Rev. B 2013, 88, 054111.
R. U. Chandrasena, W. Yang, Q. Lei, M. U. Delgado-Jaime, K. D. Wijesekara, M. Golalikhani, B. A. Davidson, E. Arenholz, K. Kobayashi, M. Kobata, F. M. F. de Groot, U. Aschauer, N. A. Spaldin, X. Xi, A. X. Gray, Nano Lett. 2017, 17, 794.
X. Liu, W. Kang, W. Zeng, Y. Zhang, L. Qi, F. Ling, L. Fang, Q. Chen, M. Zhou, Appl. Surf. Sci. 2020, 499, 143994.
L. Xia, T. Tybell, S. M. Selbach, J. Mater. Chem. C 2019, 7, 4870.
W. Wen, J. Hai, J. Yao, Y.-J. Gu, H. Kobayashi, H. Tian, T. Sun, Q. Chen, P. Yang, C. Geng, J.-M. Wu, Chem. Mater. 2021, 33, 1489.
B. T. Sneed, A. P. Young, D. Jalalpoor, M. C. Golden, S. Mao, Y. Jiang, Y. Wang, C.-K. Tsung, ACS Nano 2014, 8, 7239.

Auteurs

Yingxuan Miao (Y)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Yunxuan Zhao (Y)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Shuai Zhang (S)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Run Shi (R)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Tierui Zhang (T)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Classifications MeSH