Reduced-cost two-level surrogate antenna modeling using domain confinement and response features.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 Mar 2022
18 Mar 2022
Historique:
received:
04
10
2021
accepted:
11
03
2022
entrez:
19
3
2022
pubmed:
20
3
2022
medline:
20
3
2022
Statut:
epublish
Résumé
Electromagnetic (EM) simulation tools have become indispensable in the design of contemporary antennas. Still, the major setback of EM-driven design is the associated computational overhead. This is because a single full-wave simulation may take from dozens of seconds up to several hours, thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This is where faster system representations (surrogates) come into play. Replacing expensive EM-based evaluations by cheap yet accurate metamodels seems to be an attractive solution. Still, in antenna design, application of surrogate models is hindered by the curse of dimensionality. A practical workaround has been offered by the recently reported reference-design-free constrained modeling techniques that restrict the metamodel domain to the parameter space region encompassing high-quality designs. Therein, the domain is established using only a handful of EM-simulations. This paper proposes a novel modeling technique, which incorporates the response feature technology into the constrained modeling framework. Our methodology allows for rendering accurate surrogates using exceptionally small training data sets, at the expense of reducing the generality of the modeling procedure to antennas that exhibit consistent shape of input characteristics. The proposed technique can be employed in other fields that employ costly simulation models (e.g., mechanical or aerospace engineering).
Identifiants
pubmed: 35305009
doi: 10.1038/s41598-022-08710-2
pii: 10.1038/s41598-022-08710-2
pmc: PMC8933475
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4667Subventions
Organisme : Narodowe Centrum Nauki
ID : 2018/31/B/ST7/02369
Organisme : Icelandic Centre for Research
ID : 217771
Informations de copyright
© 2022. The Author(s).
Références
Fusion 360, Autodesk, 111 McInnis Parkway San Rafael, 94903 California, USA, (2019).
Inventor, Autodesk, 111 McInnis Parkway San Rafael, 94903 California, USA, (2019).
Multiphysics Simulation, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA, USA, (2019).
Liersch, C. M. & Hepperle, M. A distributed toolbox for multidisciplinary preliminary aircraft design. CEAS Aeronaut. J. 2, 57–68 (2011).
doi: 10.1007/s13272-011-0024-6
Hao, J. & Sheng, X. Accurate and efficient simulation model for the scattering from a ship on a sea-like surface. IEEE Geosci. Remote Sens. Lett. 14, 2375–2379 (2017).
doi: 10.1109/LGRS.2017.2765342
Rosenberg, A., Selvaraj, S. & Sharma, A. A novel dual-rotor turbine for increased wind energy capture. J. Phys: Conf. Ser. 524, 1–10 (2014).
Hussain, R. Shared-aperture slot-based sub-6-GHz and mm-wave IoT antenna for 5G applications. IEEE Internet Things J. 8, 10807–10814 (2021).
doi: 10.1109/JIOT.2021.3050383
Santamaria, L., Ferrero, F., Staraj, R. & Lizzi, L. Slot-based pattern reconfigurable ESPAR antenna for IoT applications. IEEE Trans. Antennas Propag. 69, 3635–3644 (2021).
doi: 10.1109/TAP.2020.3044399
Yuan, X.-T., Chen, Z., Gu, T. & Yuan, T. A wideband PIFA-pair-based MIMO antenna for 5G smartphones. IEEE Antennas Wirel. Propag. Lett. 20, 371–375 (2021).
doi: 10.1109/LAWP.2021.3050337
Yang, G., Zhang, Y. & Zhang, S. Wide-band and wide-angle scanning phased array antenna for mobile communication system. IEEE Open J. Antennas Propag. 2, 203–212 (2021).
doi: 10.1109/OJAP.2021.3057062
Mirzaee, M., Mirbeik-Sabzevari, A. & Tavassolian, N. 15–40 GHz and 40–110 GHz double-ridge open-ended waveguide antennas for ultra-wideband medical imaging applications. IEEE Open J. Antennas Propag. 2, 599–612 (2021).
doi: 10.1109/OJAP.2021.3078886
Zhou, J. et al. A trust-region parallel bayesian optimization method for simulation-driven antenna design. IEEE Trans. Antennas Propag. 69, 3966–3981 (2021).
doi: 10.1109/TAP.2020.3044393
Hasni, U., Piper, M. E., Lundquist, J. & Topsakal, E. Screen-printed fabric antennas for wearable applications. IEEE Open J. Antennas Propag. 2, 591–598 (2021).
doi: 10.1109/OJAP.2021.3070919
Ma, S., Björninen, T., Sydänheimo, L., Voutilainen, M. H. & Ukkonen, L. Double split rings as extremely small and tuneable antennas for brain implantable wireless medical microsystems. IEEE Trans. Antennas Propag. 69, 760–768 (2021).
doi: 10.1109/TAP.2020.3016459
Russo, N. E., Zekios, C. L. & Georgakopoulos, S. V. Decoupling modes in multi-band microstrip patch antennas. IEEE Open J. Antennas Propag. 2, 118–125 (2021).
doi: 10.1109/OJAP.2020.3046458
El-Hameed, A. S. A. & Sato, M. Antenna array for Ku-band MIMO GB-SAR. IEEE Access. 9, 29565–29572 (2021).
doi: 10.1109/ACCESS.2021.3058004
Ho, A. T., Pistono, E., Corrao, N. & Ferrari, P. Circular polarized square slot antenna based on slow-wave substrate integrated waveguide. IEEE Trans. Antennas Propag. 69, 1273–1282 (2021).
doi: 10.1109/TAP.2020.3030933
Sipal, D., Abegaonkar, M. P. & Koul, S. K. Highly isolated compact planar dual-band antenna with polarization/pattern diversity characteristics for MIMO terminals. IEEE Antennas Wirel. Propag. Lett. 18, 762–766 (2019).
doi: 10.1109/LAWP.2019.2902247
Chen, Z., Zhou, W. & Hong, J. A miniaturized MIMO antenna with triple band-notched characteristics for UWB applications. IEEE Access. 9, 63646–63655 (2021).
doi: 10.1109/ACCESS.2021.3074511
Wang, Z., Dong, Y. & Itoh, T. Miniaturized wideband CP antenna based on metaresonator and CRLH-TLs for 5G new radio applications. IEEE Trans. Antennas Propag. 69, 74–83 (2021).
doi: 10.1109/TAP.2020.3008626
Shao, Z. & Zhang, Y. A single-layer miniaturized patch antenna based on coupled microstrips. IEEE Antennas Wirel. Prop. Lett. 20, 823–827 (2021).
doi: 10.1109/LAWP.2021.3064908
Haq, M. A. & Koziel, S. Feed line alterations for optimization-based design of compact super wideband MIMO antennas in parallel configuration. IEEE Antennas Wirel. Prop. Lett. 18, 1986–1990 (2019).
doi: 10.1109/LAWP.2019.2935783
Kouassi, A. et al. Reliability-aware optimization of a wideband antenna. IEEE Trans. Antennas Propag. 64, 450–460 (2016).
doi: 10.1109/TAP.2015.2508482
Zhang, J., Akinsolu, M. O., Liu, B. & Vandenbosch, G. A. E. Automatic AI-driven design of mutual coupling reducing topologies for frequency reconfigurable antenna arrays. IEEE Trans. Antennas Propag. 69, 1831–1836 (2021).
doi: 10.1109/TAP.2020.3012792
Prado, D. R., López-Fernández, J. A., Arrebola, M. & Goussetis, G. On the use of the angle of incidence in support vector regression surrogate models for practical reflectarray design. IEEE Trans. Antennas Propag. 69, 1787–1792 (2021).
doi: 10.1109/TAP.2020.3015707
Baratta, I. A., de Andrade, C. B., de Assis, R. R. & Silva, E. J. Infinitesimal dipole model using space mapping optimization for antenna placement. IEEE Antennas Wirel. Prop. Lett. 17, 17–20 (2018).
doi: 10.1109/LAWP.2017.2771721
Xu, J., Li, M. & Chen, R. Space mapping optimisation of 2D array elements arrangement to reduce the radar cross-scattering. IET Microw. Ant. Prop. 11, 1578–1582 (2017).
doi: 10.1049/iet-map.2016.0414
Koziel, S. & Leifsson, L. Simulation-driven design by knowledge-based response correction techniques (Springer, New York, NY, 2016).
doi: 10.1007/978-3-319-30115-0
Koziel, S. & Unnsteinsson, S. D. Expedited design closure of antennas by means of trust-region-based adaptive response scaling. IEEE Antennas Wirel. Prop. Lett. 17, 1099–1103 (2018).
doi: 10.1109/LAWP.2018.2834145
Zhang, C., Feng, F., Gongal-Reddy, V., Zhang, Q. J. & Bandler, J. W. Cognition-driven formulation of space mapping for equal-ripple optimization of microwave filters. IEEE Trans. Microw. Theory Tech. 63, 2154–2165 (2015).
doi: 10.1109/TMTT.2015.2431675
Koziel, S., Ogurtsov, S., Cheng, Q. S. & Bandler, J. W. Rapid EM-based microwave design optimization exploiting shape-preserving response prediction and adjoint sensitivities. IET Microw. Ant. Prop. 8, 775–781 (2014).
doi: 10.1049/iet-map.2013.0636
Lophaven, S. N., Nielsen, H. B. & Søndergaard, J. DACE: A MATLAB kriging toolbox. Univ. Denmark, Lyngby, Denmark, Tech. Rep. IMMTR-2002–12 (2002).
Gorissen, D., Crombecq, K., Couckuyt, I., Dhaene, T. & Demeester, P. A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res. 11, 2051–2055 (2010).
Marelli, S. & Sudret, B. UQLab: A framework for uncertainty quantification in MATLAB. In Proceeding of the Vulnerability, Uncertainty, Risk, London, UK. 2554–2563 (2014).
Koziel, S., Ogurtsov, S., Couckuyt, I. & Dhaene, T. Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas. IEEE Trans. Antennas Propag. 61, 1301–1308 (2012).
doi: 10.1109/TAP.2012.2231924
Kleijnen, J. P. C. Kriging metamodeling in simulation: A review. Eur. J. Oper. Res. 192, 707–716 (2009).
doi: 10.1016/j.ejor.2007.10.013
Easum, J. A., Nagar, J. & Werner, D. H. Multi-objective surrogate-assisted optimization applied to patch antenna design. In Proceedings of the IEEE International Symposium Antennas Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 339–340 (2017).
Jacobs, J. P. Efficient resonant frequency modeling for dual-band microstrip antennas by gaussian process regression. IEEE Antennas Wirel. Prop. Lett. 14, 337–341 (2015).
doi: 10.1109/LAWP.2014.2362937
Jacobs, J. P. Bayesian support vector regression with automatic relevance determination kernel for modeling of antenna input characteristics. IEEE Trans. Antennas Propag. 60, 2114–2118 (2012).
doi: 10.1109/TAP.2012.2186252
Dong, J., Qin, W. & Wang, M. Fast multi-objective optimization of multi-parameter antenna structures based on improved BPNN surrogate model. IEEE Access. 7, 77692–77701 (2019).
doi: 10.1109/ACCESS.2019.2920945
Koziel, S., Mahouti, P., Calik, N., Belen, M. A. & Szczepanski, S. Improved modeling of microwave structures using performance-driven fully-connected regression surrogate. IEEE Access. 9, 71470–71481 (2021).
doi: 10.1109/ACCESS.2021.3078432
Couckuyt, I. Forward and inverse surrogate modeling of computationally expensive problems. Ph.D. Dissertation, Ghent University, Ghent, Belgium (2013).
Yelten, M. B., Zhu, T., Koziel, S., Franzon, P. D. & Steer, M. B. Demystifying surrogate modeling for circuits and systems. IEEE Circuits Syst. Mag. 12, 45–63 (2012).
doi: 10.1109/MCAS.2011.2181095
Queipo, N. V. et al. Surrogate based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005).
doi: 10.1016/j.paerosci.2005.02.001
Wu, X., Peng, X., Chen, W. & Zhang, W. A developed surrogate-based optimization framework combining HDMR-based modeling technique and TLBO algorithm for high-dimensional engineering problems. Struct. Multidiscip. Optim. 60, 663–680 (2019).
doi: 10.1007/s00158-019-02228-4
Tropp, J. A. & Gilbert, A. C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53, 4655–4666 (2007).
doi: 10.1109/TIT.2007.909108
Koziel, S. & Sigurdsson, A. T. Triangulation-based constrained surrogate modeling of antennas. IEEE Trans. Antennas Propag. 66, 4170–4179 (2018).
doi: 10.1109/TAP.2018.2839759
Koziel, S. & Pietrenko-Dabrowska, A. Performance-based nested surrogate modeling of antenna input characteristics. IEEE Trans. Antennas Propag. 67, 2904–2912 (2019).
doi: 10.1109/TAP.2019.2896761
Koziel, S. & Pietrenko-Dabrowska, A. Knowledge-based performance-driven modeling of antenna structures. Knowl Based Syst 237, 107698 (2022).
doi: 10.1016/j.knosys.2021.107698
Koziel, S. Fast simulation-driven antenna design using response-feature surrogates. Int. J. RF Microw. CAE 25, 394–402 (2015).
doi: 10.1002/mmce.20873
Koziel, S. & Pietrenko-Dabrowska, A. Design-oriented computationally-efficient feature-based surrogate modeling of multi-band antennas with nested kriging. Int. J. Electr. Commun. AEU 120, 153202 (2020).
doi: 10.1016/j.aeue.2020.153202
Koziel, S. & Pietrenko-Dabrowska, A. Performance-driven surrogate modeling of high-frequency structures (Springer, New York, 2020).
doi: 10.1007/978-3-030-38926-0
Koziel, S. & Pietrenko-Dabrowska, A. Robust parameter tuning of antenna structures by means of design specification adaptation. IEEE Trans. Antennas Propag. Early Access (2021).
Koziel, S. & Pietrenko-Dabrowska, A. Expedited feature-based quasi-global optimization of multi-band antenna input characteristics with Jacobian variability tracking. IEEE Access 8, 83907–83915 (2020).
doi: 10.1109/ACCESS.2020.2992134
Koziel, S. & Bandler, J. W. Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis. IEEE Trans. Microw. Theory Tech. 63, 107–114 (2015).
doi: 10.1109/TMTT.2014.2373365
Sim, C.-Y.-D., Chang, M.-H. & Chen, B.-Y. Microstrip-fed ring slot antenna design with wideband harmonic suppression. IEEE Trans. Antennas Propag. 62, 4828–4832 (2014).
doi: 10.1109/TAP.2014.2330595
Chen, Y. -C., Chen, S. -Y. & Hsu, P. Dual-band slot dipole antenna fed by a coplanar waveguide. In IEEE Antennas and Propagation Society International Symposium. 3589–3592 (2006).
Kaneda, N., Deal, W. R., Qian, Y., Waterhouse, R. & Itoh, T. A broad-band planar quasi Yagi antenna. IEEE Trans. Antennas Propag. 50, 1158–1160 (2002).
doi: 10.1109/TAP.2002.801299