Motoneuronal inflammasome activation triggers excessive neuroinflammation and impedes regeneration after sciatic nerve injury.


Journal

Journal of neuroinflammation
ISSN: 1742-2094
Titre abrégé: J Neuroinflammation
Pays: England
ID NLM: 101222974

Informations de publication

Date de publication:
19 Mar 2022
Historique:
received: 07 09 2021
accepted: 01 03 2022
entrez: 20 3 2022
pubmed: 21 3 2022
medline: 8 4 2022
Statut: epublish

Résumé

Peripheral nerve injuries are accompanied by inflammatory reactions, over-activation of which may hinder recovery. Among pro-inflammatory pathways, inflammasomes are one of the most potent, leading to release of active IL-1β. Our aim was to understand how inflammasomes participate in central inflammatory reactions accompanying peripheral nerve injury. After axotomy of the sciatic nerve, priming and activation of the NLRP3 inflammasome was examined in cells of the spinal cord. Regeneration of the nerve was evaluated after coaptation using sciatic functional index measurements and retrograde tracing. In the first 3 days after the injury, elements of the NLRP3 inflammasome were markedly upregulated in the L4-L5 segments of the spinal cord, followed by assembly of the inflammasome and secretion of active IL-1β. Although glial cells are traditionally viewed as initiators of neuroinflammation, in this acute phase of inflammation, inflammasome activation was found exclusively in affected motoneurons of the ventral horn in our model. This process was significantly inhibited by 5-BDBD, a P2X4 receptor inhibitor and MCC950, a potent NLRP3 inhibitor. Although at later time points the NLRP3 protein was upregulated in microglia too, no signs of inflammasome activation were detected in these cells. Inhibition of inflammasome activation in motoneurons in the first days after nerve injury hindered development of microgliosis in the spinal cord. Moreover, P2X4 or inflammasome inhibition in the acute phase significantly enhanced nerve regeneration on both the morphological and the functional levels. Our results indicate that the central reaction initiated by sciatic nerve injury starts with inflammasome activation in motoneurons of the ventral horn, which triggers a complex inflammatory reaction and activation of microglia. Inhibition of neuronal inflammasome activation not only leads to a significant reduction of microgliosis, but has a beneficial effect on the recovery as well.

Sections du résumé

BACKGROUND BACKGROUND
Peripheral nerve injuries are accompanied by inflammatory reactions, over-activation of which may hinder recovery. Among pro-inflammatory pathways, inflammasomes are one of the most potent, leading to release of active IL-1β. Our aim was to understand how inflammasomes participate in central inflammatory reactions accompanying peripheral nerve injury.
METHODS METHODS
After axotomy of the sciatic nerve, priming and activation of the NLRP3 inflammasome was examined in cells of the spinal cord. Regeneration of the nerve was evaluated after coaptation using sciatic functional index measurements and retrograde tracing.
RESULTS RESULTS
In the first 3 days after the injury, elements of the NLRP3 inflammasome were markedly upregulated in the L4-L5 segments of the spinal cord, followed by assembly of the inflammasome and secretion of active IL-1β. Although glial cells are traditionally viewed as initiators of neuroinflammation, in this acute phase of inflammation, inflammasome activation was found exclusively in affected motoneurons of the ventral horn in our model. This process was significantly inhibited by 5-BDBD, a P2X4 receptor inhibitor and MCC950, a potent NLRP3 inhibitor. Although at later time points the NLRP3 protein was upregulated in microglia too, no signs of inflammasome activation were detected in these cells. Inhibition of inflammasome activation in motoneurons in the first days after nerve injury hindered development of microgliosis in the spinal cord. Moreover, P2X4 or inflammasome inhibition in the acute phase significantly enhanced nerve regeneration on both the morphological and the functional levels.
CONCLUSIONS CONCLUSIONS
Our results indicate that the central reaction initiated by sciatic nerve injury starts with inflammasome activation in motoneurons of the ventral horn, which triggers a complex inflammatory reaction and activation of microglia. Inhibition of neuronal inflammasome activation not only leads to a significant reduction of microgliosis, but has a beneficial effect on the recovery as well.

Identifiants

pubmed: 35305649
doi: 10.1186/s12974-022-02427-9
pii: 10.1186/s12974-022-02427-9
pmc: PMC8934511
doi:

Substances chimiques

Inflammasomes 0
NLR Family, Pyrin Domain-Containing 3 Protein 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

68

Subventions

Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : FK124114
Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : K135475
Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : K135425
Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : GINOP-2.3.2-15-2016-00034
Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : ÚNKP-20-4-SZTE-138
Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : ÚNKP-20-2-SZTE-68
Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : ÚNKP-21-3-SZTE-60
Organisme : Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
ID : PN-III-P1-1.1-TE-2019-1302
Organisme : Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
ID : PN-III-P4-ID-PCE-2020-1529
Organisme : Innovációs és Technológiai Minisztérium
ID : FEIF/433-4/2020-ITM_SZERZ

Informations de copyright

© 2022. The Author(s).

Références

J Neuroinflammation. 2015 Aug 08;12:143
pubmed: 26253422
J Pain. 2011 Mar;12(3):370-83
pubmed: 20889388
Curr Opin Neurol. 2011 Dec;24(6):577-83
pubmed: 21968547
Cell Mol Immunol. 2021 May;18(5):1141-1160
pubmed: 33850310
Brain Pathol. 2018 Jan;28(1):14-27
pubmed: 27880990
Brain Res. 2020 Aug 15;1741:146875
pubmed: 32389588
Front Cell Neurosci. 2017 Mar 09;11:63
pubmed: 28337127
Ann Anat. 2011 Jul;193(4):321-33
pubmed: 21640570
Cells. 2020 Jul 04;9(7):
pubmed: 32635451
Mol Cell. 2002 Aug;10(2):417-26
pubmed: 12191486
J Neuroimmunol. 1994 Feb;50(1):9-16
pubmed: 8300861
FASEB J. 2020 Apr;34(4):5465-5482
pubmed: 32086866
CNS Neurol Disord Drug Targets. 2017;16(3):356-367
pubmed: 28017131
Curr Neurovasc Res. 2018;15(4):276-281
pubmed: 30468127
Behav Res Methods. 2009 Nov;41(4):1149-60
pubmed: 19897823
Nat Rev Immunol. 2020 Feb;20(2):95-112
pubmed: 31558839
J Neurochem. 2008 May;105(4):1276-86
pubmed: 18194440
J Cereb Blood Flow Metab. 2016 Oct;36(10):1668-1685
pubmed: 27486046
J Comp Neurol. 2008 Jan 1;506(1):75-92
pubmed: 17990272
Science. 2011 Oct 7;334(6052):47-8
pubmed: 21980100
Int Immunopharmacol. 2020 Jul;84:106492
pubmed: 32402947
J Biol Chem. 2019 Nov 22;294(47):17951-17961
pubmed: 31597697
Nature. 2003 Aug 14;424(6950):778-83
pubmed: 12917686
Nature. 2013 Jan 31;493(7434):674-8
pubmed: 23254930
Nat Immunol. 2015 Aug;16(8):859-70
pubmed: 26098997
Sci Rep. 2020 May 26;10(1):8648
pubmed: 32457369
J Neurosci. 2012 Feb 29;32(9):3058-66
pubmed: 22378878
Acta Neuropathol. 2017 Mar;133(3):489-491
pubmed: 28108787
Cell Rep. 2016 Jul 19;16(3):605-14
pubmed: 27373153
Front Neurosci. 2015 Apr 28;9:148
pubmed: 25972780
Eur J Immunol. 2010 Mar;40(3):607-11
pubmed: 20201012
Nat Immunol. 2008 Aug;9(8):857-65
pubmed: 18604209
Trends Immunol. 2016 Oct;37(10):668-679
pubmed: 27616557
Mol Neurobiol. 2018 Feb;55(2):1082-1096
pubmed: 28092085
Mol Pain. 2021 Jan-Dec;17:17448069211011326
pubmed: 33906495
Neurosci Bull. 2020 Nov;36(11):1327-1343
pubmed: 32889635
EMBO Mol Med. 2019 Jun;11(6):
pubmed: 31015277
J Hematol Oncol. 2016 Nov 14;9(1):122
pubmed: 27842563
Immunity. 2019 Feb 19;50(2):317-333.e6
pubmed: 30683620
Sci Rep. 2019 Jan 24;9(1):507
pubmed: 30679481
Science. 1980 May 9;208(4444):603-5
pubmed: 7367884
Curr Neuropharmacol. 2018;16(8):1224-1238
pubmed: 28606040
Brain Res. 2014 May 30;1566:1-11
pubmed: 24769167
J Neurosci. 2011 Aug 31;31(35):12533-42
pubmed: 21880915
J Neurochem. 2011 Nov;119(4):736-48
pubmed: 21913925
Brain Behav Immun. 2007 Jul;21(5):599-616
pubmed: 17187959
J Reconstr Microsurg. 2007 Oct;23(7):381-9
pubmed: 17979067
J Neurotrauma. 2004 Jan;21(1):95-108
pubmed: 14987469
J Neurochem. 2016 Oct;139 Suppl 2:136-153
pubmed: 26990767
Methods Mol Biol. 2013;1040:91-101
pubmed: 23852599
Front Pharmacol. 2020 Nov 26;11:584184
pubmed: 33328988
Mediators Inflamm. 2015;2015:251204
pubmed: 25918475
Front Immunol. 2021 Mar 25;12:645834
pubmed: 33897694
J Neurosci. 2015 Dec 16;35(50):16431-42
pubmed: 26674868
Glia. 2019 Jan;67(1):78-90
pubmed: 30306657
Int J Biochem Cell Biol. 2013 May;45(5):932-43
pubmed: 23434541
Nat Rev Immunol. 2016 Jul;16(7):407-20
pubmed: 27291964
Microsurgery. 1998;18(2):119-24
pubmed: 9674927
NPJ Parkinsons Dis. 2018 Aug 15;4:24
pubmed: 30131971
J Exp Med. 2017 May 1;214(5):1351-1370
pubmed: 28404595

Auteurs

Kinga Molnár (K)

Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.

Bernát Nógrádi (B)

Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.
Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
Department of Neurology, University of Szeged, Szeged, Hungary.

Rebeka Kristóf (R)

Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.
Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.

Ádám Mészáros (Á)

Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.
Doctoral School of Biology, University of Szeged, Szeged, Hungary.

Krisztián Pajer (K)

Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary.

László Siklós (L)

Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.

Antal Nógrádi (A)

Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary.

Imola Wilhelm (I)

Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary. wilhelm.imola@brc.hu.
Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania. wilhelm.imola@brc.hu.

István A Krizbai (IA)

Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary. krizbai.istvan@brc.hu.
Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania. krizbai.istvan@brc.hu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH