In silico proteolysis and molecular interaction of tilapia (Oreochromis niloticus) skin collagen-derived peptides for environmental remediation.
Active peptides
Dipeptidyl peptidase-IV inhibitor
Molecular docking
Tilapia skin collagen
Type 2 diabetes mellitus
Journal
Environmental research
ISSN: 1096-0953
Titre abrégé: Environ Res
Pays: Netherlands
ID NLM: 0147621
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
30
11
2021
revised:
24
01
2022
accepted:
20
02
2022
pubmed:
21
3
2022
medline:
22
6
2022
entrez:
20
3
2022
Statut:
ppublish
Résumé
Fish skin collagen hydrolyzate has demonstrated the potent inhibition of dipeptidyl peptidase-IV (DPP-IV), one of the treatments for type-2 diabetes mellitus (type-2 DM), but the precise mechanism is still unclear. This study used in silico method to evaluate the potential of the active peptides from tilapia skin collagen (Oreochromis niloticus) for DPP-IV inhibitor. The methodology includes collagen hydrolysis using BIOPEP, which is the database of bioactive peptides; active peptide selection; toxicity, allergenicity, sensory analysis of active peptides; and binding of active peptides to DPP-IV compared with linagliptin. The result indicated that in silico enzymatic hydrolysis of collagen produced active peptides with better prediction of biological activity than intact collagen. There are 13 active peptides were predicted as non-toxic and non-allergenic, some of which have a bitter, salty, and undetectable taste. Docking simulations showed all active peptides interacted with DPP-IV through hydrogen bonds, van der Waals force, hydrophobic interaction, electrostatic force, π-sulfur, and unfavorable interaction, where WF (Trp-Phe), VW (Val-Trp), WY (Trp-Tyr), and WG (Trp-Gly) displayed higher binding affinities of 0.8; 0.5; 0.4; and 0.3 kcal/mol compared with linagliptin. In this study, we successfully demonstrated antidiabetic type-2 DM potential of the active peptides from tilapia skin collagen. The obtained data provided preliminary data for further research in the utilization of fish skin waste as a functional compound to treat the type-2 DM patients. Alternatively, this treatment can be synergistically combined with the available antidiabetic drugs to improve the insulin secretion of the type-2 DM patients.
Identifiants
pubmed: 35305983
pii: S0013-9351(22)00329-2
doi: 10.1016/j.envres.2022.113002
pii:
doi:
Substances chimiques
Peptides
0
Linagliptin
3X29ZEJ4R2
Collagen
9007-34-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
113002Informations de copyright
Copyright © 2022 Elsevier Inc. All rights reserved.