Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 03 2022
Historique:
received: 22 06 2021
accepted: 08 03 2022
entrez: 20 3 2022
pubmed: 21 3 2022
medline: 6 5 2022
Statut: epublish

Résumé

Drug-target interaction (DTI) prediction plays a crucial role in drug repositioning and virtual drug screening. Most DTI prediction methods cast the problem as a binary classification task to predict if interactions exist or as a regression task to predict continuous values that indicate a drug's ability to bind to a specific target. The regression-based methods provide insight beyond the binary relationship. However, most of these methods require the three-dimensional (3D) structural information of targets which are still not generally available to the targets. Despite this bottleneck, only a few methods address the drug-target binding affinity (DTBA) problem from a non-structure-based approach to avoid the 3D structure limitations. Here we propose Affinity2Vec, as a novel regression-based method that formulates the entire task as a graph-based problem. To develop this method, we constructed a weighted heterogeneous graph that integrates data from several sources, including drug-drug similarity, target-target similarity, and drug-target binding affinities. Affinity2Vec further combines several computational techniques from feature representation learning, graph mining, and machine learning to generate or extract features, build the model, and predict the binding affinity between the drug and the target with no 3D structural data. We conducted extensive experiments to evaluate and demonstrate the robustness and efficiency of the proposed method on benchmark datasets used in state-of-the-art non-structured-based drug-target binding affinity studies. Affinity2Vec showed superior and competitive results compared to the state-of-the-art methods based on several evaluation metrics, including mean squared error, rm2, concordance index, and area under the precision-recall curve.

Identifiants

pubmed: 35306525
doi: 10.1038/s41598-022-08787-9
pii: 10.1038/s41598-022-08787-9
pmc: PMC8934358
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4751

Informations de copyright

© 2022. The Author(s).

Références

Methods Mol Biol. 2016;1374:23-54
pubmed: 26519399
Bioinformatics. 2017 Nov 15;33(22):3575-3583
pubmed: 28961686
PeerJ Comput Sci. 2021 Feb 18;7:e341
pubmed: 33816992
Bioinformatics. 2015 Feb 1;31(3):405-12
pubmed: 25301850
J Cheminform. 2020 Jun 29;12(1):44
pubmed: 33431036
Nat Biotechnol. 2011 Oct 30;29(11):1046-51
pubmed: 22037378
Bioinformatics. 2021 May 5;37(5):693-704
pubmed: 33067636
Sci Rep. 2021 Feb 24;11(1):4416
pubmed: 33627791
J Am Chem Soc. 2003 Oct 1;125(39):11853-65
pubmed: 14505407
Front Chem. 2019 Nov 20;7:782
pubmed: 31824921
J Cheminform. 2021 Sep 22;13(1):71
pubmed: 34551818
Bioinformatics. 2018 Sep 1;34(17):i821-i829
pubmed: 30423097
Bioinformatics. 2021 May 23;37(8):1140-1147
pubmed: 33119053
Bioinformatics. 2020 Nov 1;36(17):4633-4642
pubmed: 32462178
J Biomed Inform. 2019 May;93:103159
pubmed: 30926470
BMC Bioinformatics. 2016 Apr 12;17:160
pubmed: 27071755
J Cheminform. 2017 Apr 18;9(1):24
pubmed: 29086119
Nat Rev Drug Discov. 2019 Jan;18(1):41-58
pubmed: 30310233
Nat Rev Drug Discov. 2010 Mar;9(3):203-14
pubmed: 20168317
J Chem Inf Model. 2007 Nov-Dec;47(6):2345-57
pubmed: 17880194
Expert Opin Drug Metab Toxicol. 2014 Sep;10(9):1273-87
pubmed: 25112457
Molecules. 2009 Apr 29;14(5):1660-701
pubmed: 19471190
Chem Sci. 2017 Oct 31;9(2):513-530
pubmed: 29629118
PLoS One. 2015 Nov 10;10(11):e0141287
pubmed: 26555596
Med Res Rev. 2006 Sep;26(5):531-68
pubmed: 16758486
BMC Syst Biol. 2014;8 Suppl 5:S5
pubmed: 25605483
J Comput Chem. 2013 May 5;34(12):1071-82
pubmed: 23299630
Bioinformatics. 2021 Apr 1;36(22-23):5545-5547
pubmed: 33275143
Mol Inform. 2019 Jun;38(6):e1800082
pubmed: 30844132
Expert Opin Drug Discov. 2019 Aug;14(8):755-768
pubmed: 31146609
Bioinformatics. 2020 Jan 15;36(2):603-610
pubmed: 31368482
Bioinformatics. 2008 Jul 1;24(13):i232-40
pubmed: 18586719
Bioinformatics. 2019 Sep 15;35(18):3329-3338
pubmed: 30768156
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9
pubmed: 14681372
Bioinformatics. 2019 Jan 15;35(2):309-318
pubmed: 29982330
Brief Bioinform. 2019 Jul 19;20(4):1337-1357
pubmed: 29377981
Front Genet. 2020 Jan 09;10:1243
pubmed: 31993067
Front Pharmacol. 2018 Oct 09;9:1134
pubmed: 30356768
PLoS One. 2012;7(7):e41064
pubmed: 22815915
Methods Mol Biol. 2017;1647:255-266
pubmed: 28809009
Brief Bioinform. 2021 Jan 18;22(1):247-269
pubmed: 31950972
J Chem Inf Model. 2014 Mar 24;54(3):735-43
pubmed: 24521231
Bioinformatics. 2018 Apr 1;34(7):1164-1173
pubmed: 29186331
Brief Bioinform. 2016 Jul;17(4):696-712
pubmed: 26283676
Brief Bioinform. 2015 Mar;16(2):325-37
pubmed: 24723570
Methods Mol Biol. 2018;1762:21-30
pubmed: 29594765
Bioinformatics. 2020 May 1;36(9):2805-2812
pubmed: 31971579
Bioinformatics. 2017 Sep 01;33(17):2723-2730
pubmed: 28449114
Bioinformatics. 2021 Jun 28;:
pubmed: 34180970

Auteurs

Maha A Thafar (MA)

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
College of Computers and Information Technology, Taif University, Taif, Saudi Arabia.

Mona Alshahrani (M)

National Center for Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Saudi Arabia.

Somayah Albaradei (S)

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

Takashi Gojobori (T)

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Magbubah Essack (M)

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. magbubah.essack@kaust.edu.sa.

Xin Gao (X)

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. xin.gao@kaust.edu.sa.

Articles similaires

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Humans Artificial Intelligence Neoplasms Prognosis Image Processing, Computer-Assisted

Classifications MeSH