In silico modeling of the antagonistic effect of mercuric chloride and silver nanoparticles on the mortality rate of zebrafish (Danio rerio) based on response surface methodology.


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 04 06 2021
accepted: 09 03 2022
pubmed: 21 3 2022
medline: 10 8 2022
entrez: 20 3 2022
Statut: ppublish

Résumé

In this study, in silico modeling was designed to examine the antagonistic effect of mercuric chloride (HgCl

Identifiants

pubmed: 35306655
doi: 10.1007/s11356-022-19693-y
pii: 10.1007/s11356-022-19693-y
doi:

Substances chimiques

Water Pollutants, Chemical 0
Silver 3M4G523W1G
Mercuric Chloride 53GH7MZT1R
Mercury FXS1BY2PGL

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

54733-54744

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:1–11. https://doi.org/10.1186/1477-3155-10-14
doi: 10.1186/1477-3155-10-14
Bachand SM, Kraus TEC, Stern D, Liang YL, Horwath WR, Bachand PAM (2019) Aluminum- and iron-based coagulation for in-situ removal of dissolved organic carbon, disinfection byproducts, mercury and other constituents from agricultural drain water. Ecol Eng 134:26–38. https://doi.org/10.1016/j.ecoleng.2019.02.015
doi: 10.1016/j.ecoleng.2019.02.015
Barone G, Storelli A, Meleleo D, Dambrosio A, Garofalo R, Busco A, Storelli MM (2021) Levels of Mercury, Methylmercury and Selenium in Fish: Insights into Children Food Safety. Toxics 9. https://doi.org/10.3390/toxics9020039
Botha TL, James TE, Wepener V (2015) Comparative aquatic toxicity of gold nanoparticles and ionic gold using a species sensitivity distribution approach. J Nanomater 2015:986902. https://doi.org/10.1155/2015/986902
doi: 10.1155/2015/986902
Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351. https://doi.org/10.1016/S0045-6535(99)00283-0
doi: 10.1016/S0045-6535(99)00283-0
Caballero MV, Candiracci M (2018) Zebrafish as screening model for detecting toxicity and drugs efficacy. J Unexplored Med Data 3:4. https://doi.org/10.20517/2572-8180.2017.15
Deng L, Ouyang X, Jin J, Ma C, Jiang Y, Zheng J, Li J, Li Y, Tan W, Yang R (2013) Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming Ag/Hg amalgam. Anal Chem 85:8594–8600. https://doi.org/10.1021/ac401408m
doi: 10.1021/ac401408m
Deng L, Li Y, Yan X, Xiao J, Ma C, Zheng J (2015) Ultrasensitive and highly selective detection of bioaccumulation of methyl-mercury in fish samples via Ag
doi: 10.1021/ac504538v
Esmaeilbeigi M, Kalbassi MR, Seyedi J, Behzadi Tayemeh M, Amiri Moghaddam J (2021) Intra and extracellular effects of benzo [α] pyrene on liver, gill and blood of Caspian White fish (Rutilus frissi kutum): cyto-genotoxicity and histopathology approach. Mar Pollut Bull 163:111942. https://doi.org/10.1016/j.marpolbul.2020.111942
doi: 10.1016/j.marpolbul.2020.111942
Fathi M, Binkowski LJ, Azadi NA, Hamesadeghi U, Mansouri B (2018) Co-exposure effects of mercury chloride (HgCl
doi: 10.5004/dwt.2018.21994
Ghadersarbazi Z, Ghiasi F, Ghorbani F, Johari SA (2019) Toxicity assessment of arsenic on common carp (Cyprinus carpio) and development of natural sorbents to reduce the bioconcentration by RSM methodology. Chemosphere 224:247–255. https://doi.org/10.1016/j.chemosphere.2019.02.146
doi: 10.1016/j.chemosphere.2019.02.146
Gredilla A, Fdez-Ortiz de Vallejuelo S, Rodriguez-Iruretagoiena A, Gomez L, Oliveira MLS, Arana G, de Diego A, Madariaga JM, Silva LFO (2019) Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust. J Hazard Mater 378:120747. https://doi.org/10.1016/j.jhazmat.2019.120747
doi: 10.1016/j.jhazmat.2019.120747
Guo R, Ren X, Ren H (2012) A new method for analysis of the toxicity of organophosphorus pesticide, dimethoate on rotifer based on response surface methodology. J Hazard Mater 237:270–276
doi: 10.1016/j.jhazmat.2012.08.041
Hu F, Chen S, Wang C, et al (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46. https://doi.org/10.1016/j.aca.2012.02.037
Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47:2441–2456
doi: 10.1021/es304370g
Johari SA, Asghari S (2015) Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus. J Adv Environ Health Res 3, 111-119.
Joo HS, Kalbassi MR, Johari SA (2018) Hematological and histopathological effects of silver nanoparticles in rainbow trout Oncorhynchus mykiss—how about increase of salinity? Environ Sci Pollut Res 25: 15449–15461.
Kazemi A, Esmaeilbeigi M, Sahebi Z, Ansari A (2022) Health risk assessment of total chromium in the qanat as historical drinking water supplying system. Sci Total Environ 807:150795. https://doi.org/10.1016/j.scitotenv.2021.150795
doi: 10.1016/j.scitotenv.2021.150795
Kim I, Lee BT, Kim HA, Kim KW, Kim SD, Hwang YS (2016) Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143:99–105
doi: 10.1016/j.chemosphere.2015.06.046
Kim H, Kim JS, Kim PJ, et al (2018) Response of antioxidant enzymes to Cd and Pb exposure in water flea Daphnia magna: Differential metal and age — Specific patterns. Comp Biochem Physiol Part - C Toxicol Pharmacol 209:28–36. https://doi.org/10.1016/j.cbpc.2018.03.010
Krawczyka M, Stanisz E (2015) Silver nanoparticles as a solid sorbent in ultrasound assisted dispersive micro solid-phase extraction for the atomic absorption spectrometric determination of mercury in water samples. J Anal At Spectrom 30: 2353-2358. https://doi.org/10.1039/C5JA00344J
Li M, Liu W, Slaveykova VI (2020) Effects of mixtures of engineered nanoparticles and metallic pollutants on aquatic organisms. Enviro - MDPI 7:1–20. https://doi.org/10.3390/environments7040027
Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–330. https://doi.org/10.3109/17435390.2010.483745
doi: 10.3109/17435390.2010.483745
Lombardi G, Lanzirotti A, Qualls C, Socola F, Ali AM, Appenzeller O (2012) Five hundred years of mercury exposure and adaptation. J Biomed Biotechnol 2012:472858. https://doi.org/10.1155/2012/472858
doi: 10.1155/2012/472858
Little S, Johnston HJ, Stone V, Fernandes TF (2021) Acute waterborne and chronic sediment toxicity of silver and titanium dioxide nanomaterials towards the oligochaete, Lumbriculus variegatus. NanoImpact 21:100291
Mansouri B, Baramaki R (2011) Influence of Water Hardness and Ph on Acute Toxicity of Hg on Fresh Water Fish Capoeta fusca. World J Fish Mar Sci 3:132–136
Mansouri B, Rahmani R, Azadi NA, Johari SA (2016) Combined effects of silver nanoparticles and mercury on gill histopathology of zebrafish (Danio rerio). J Coast Life Med 4:421–425. https://doi.org/10.12980/jclm.4.2016j6-50
doi: 10.12980/jclm.4.2016j6-50
Mcdonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179. https://doi.org/10.1128/cmr.12.1.147
doi: 10.1128/cmr.12.1.147
OECD (2019) Organisation for Economic Cooperation and Development. OECD Guidelines for the Testing of Chemicals Section 2. Test No. 203: Fish, Acute Toxicity Test. https://doi.org/10.1787/9789264069961-en
Panichev N, Kalumba M, Mandiwana K (2014) Solid phase extraction of trace amount of mercury from natural waters on silver and gold nanoparticles. Anal Chim Acta 813:56–62
doi: 10.1016/j.aca.2014.01.011
Pandey S, Kumar R, Sharma S, Nagpure NS, K. Srivastava S, Verma M.S. (2005) Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicol Environ Saf 61:114–120. https://doi.org/10.1016/j.ecoenv.2004.08.004
doi: 10.1016/j.ecoenv.2004.08.004
Paul Das M, Jeyanthi Rebecca L, Sharmila S, Chatterjee S (2012) Study on the effect of mercury (II) chloride as disinfectant on mixed culture. J Chem Pharm Res 4:4975–4978
Rameshkumar P, Manivannan S, Ramaraj R (2013) Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg (II) ions. J Nanopart Res 15:1639
doi: 10.1007/s11051-013-1639-9
Rawal MR, Varane V, Kolhapure RR (2019) Process Parameter Optimization for Resistance Spot Welding using Response Surface Methdology. Int J Trend Sci Res Dev 3: 1078-1082. https://doi.org/10.31142/ijtsrd23151
Seyedi J, Kalbassi MR, Esmaeilbeigi M et al (2021a) Toxicity and deleterious impacts of selenium nanoparticles at supranutritional and imbalance levels on male goldfish (Carassius auratus) sperm. J Trace Elem Med Biol 66:126758. https://doi.org/10.1016/j.jtemb.2021.126758
doi: 10.1016/j.jtemb.2021.126758
Seyedi J, Tayemeh MB, Esmaeilbeigi M et al (2021b) Fatty acid alteration in liver, brain, muscle, and oocyte of zebrafish (Danio rerio) exposed to silver nanoparticles and mitigating influence of quercetin-supplemented diet. Environ Res 194:110611. https://doi.org/10.1016/j.envres.2020.110611
doi: 10.1016/j.envres.2020.110611
Shirkhanloo H, Osanloo M, Ghazaghi M, Hassani H (2017) Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls. Atmos Pollut Res 8:359–365
doi: 10.1016/j.apr.2016.10.004
Shirdel I, Kalbassi MR, Esmaeilbeigi M, Tinoush B (2020) Disruptive effects of nonylphenol on reproductive hormones, antioxidant enzymes, and histology of liver, kidney and gonads in Caspian trout smolts. Comp Biochem Physiol Part C Toxicol Pharmacol 232:108756. https://doi.org/10.1016/j.cbpc.2020.108756
doi: 10.1016/j.cbpc.2020.108756
Salari Joo H, Kalbassi MR, Yu IJ, Lee JH, Johari SA (2013) Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquat Toxicol 140–141:398–406
doi: 10.1016/j.aquatox.2013.07.003
Speshock J (2018) Review of the toxicological effects of silver nanomaterials on the model aquatic organism Danio rerio. Front Nanosci Nanotechnol 4:1–4. https://doi.org/10.15761/fnn.1000172
doi: 10.15761/fnn.1000172
Tayemeh MB, Esmailbeigi M, Shirdel I, Joo H S, Johari S A, Banan A (2020) Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: a new holistic understanding of hidden ecotoxicological aspect of pollutants. Chemosphere 238:124576
Tayemeh MB, Kalbassi MR, Paknejad H, Joo HS (2020) Dietary nanoencapsulated quercetin homeostated transcription of redox-status orchestrating genes in zebrafish (Danio rerio) exposed to silver nanoparticles. Environ Res 185:109477
Tauanov Z, Tsakiridis PE, Mikhalovsky SV, Inglezakis VJ (2018) Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. J Environ Manage 224:164–171
doi: 10.1016/j.jenvman.2018.07.049
Tauanov Z, Tsakiridis PE, Shah D, Inglezakis VJ (2019) Synthetic sodalite doped with silver nanoparticles: characterization and mercury (II) removal from aqueous solutions. J Environ Sci Health Part A 54:951–959
doi: 10.1080/10934529.2019.1611129
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB (2020) Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater 390:121974. https://doi.org/10.1016/j.jhazmat.2019.121974
doi: 10.1016/j.jhazmat.2019.121974
Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293. https://doi.org/10.1080/20016491089226
doi: 10.1080/20016491089226
Veisi S, Johari SA, Tyler CR et al (2021) Antioxidant properties of dietary supplements of free and nanoencapsulated silymarin and their ameliorative effects on silver nanoparticles induced oxidative stress in Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res 28:26055–26063. https://doi.org/10.1007/s11356-021-12568-8
doi: 10.1007/s11356-021-12568-8
Wang S, Sun H, Ang HM, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347. https://doi.org/10.1016/j.cej.2013.04.070
Wang J, Dai H, Nie Y, Wang M, Yang Z, Cheng L (2018) TiO
doi: 10.1016/j.ecoenv.2018.06.051
Yu X, Tong S, Ge M, et al (2013) One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J Mater Chem A 1:959–965. https://doi.org/10.1039/c2ta00315e
Zangeneh Kamali K, Pandikumar A, Jayabal S, Ramaraj R, Ngee Lim H, Ong BH, Daniel Bien CS, Yee Kee Y, Ming Huang N (2016) Amalgamation based optical and colorimetric sensing of mercury (II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183:369–377
doi: 10.1007/s00604-015-1658-6
Zhang L, Jiang Y, Ding Y, et al (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9:479–489. https://doi.org/10.1007/s11051-006-9150-1
Zeng C, Nguyen C, Boitano S, Field JA, Shadman F, Sierra-Alvarez R (2018) Cerium dioxide (CeO
doi: 10.1016/j.envres.2018.03.007

Auteurs

Milad Esmaeilbeigi (M)

Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran.

Mohammad Behzadi Tayemeh (M)

Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, 66177-15175, Sanandaj, Kurdistan, Iran.

Seyed Ali Johari (SA)

Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, 66177-15175, Sanandaj, Kurdistan, Iran. a.johari@uok.ac.ir.

Farshid Ghorbani (F)

Department of Environment, Faculty of Natural Resources, University of Kurdistan, 6617715177, Sanandaj, Iran.

Iman Sourinejad (I)

Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.

Il Je Yu (IJ)

HCT CO., LTD, Icheon, Republic of Korea.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH