The Universal Growth of Ultrathin Perovskite Single Crystals.
oriented solvent microenvironment
single crystals
ultrathin perovskites
universal growth
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
revised:
23
02
2022
received:
19
10
2021
pubmed:
21
3
2022
medline:
21
3
2022
entrez:
20
3
2022
Statut:
ppublish
Résumé
Perovskites have engaged significant attention owing to rich species and remarkable physical properties as well as optoelectronic applications. Compared to bulk counterparts, ultrathin perovskites exhibit more available compositions due to the breaking of bulk lattice limitation. Coupled with crystal lattice relaxation and quantum confinement, infinite intriguing properties of ultrathin perovskites deserve to be explored. Developing ultrathin perovskites with alterable composition and structure is a necessity to fully explore this versatile family. Herein, a universal strategy is conceived via constructing oriented solvent microenvironment induced by the interfacial electric field originated from the charge separation between solid and liquid phases, which is conducive to controlling the precursor distribution and makes crystals preferentially nucleate and grow in the preferentially lateral mode. From layered to nonlayered, organic to inorganic, and toxic to low-toxic lead-free perovskite, a full-range synthesis is achieved of ultrathin perovskites. This work opens up opportunities both for ultrathin perovskite exploration through compositional engineering and for device miniaturization in energy conversion applications.
Identifiants
pubmed: 35306696
doi: 10.1002/adma.202108396
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2108396Subventions
Organisme : Natural Science Foundation of China
ID : 21905210
Organisme : Natural Science Foundation of China
ID : 22025303
Organisme : the Sino-German Center for Research Promotion
ID : 1400
Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
J. S. Manser, J. A. Christians, P. V. Kamat, Chem. Rev. 2016, 116, 12956.
E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey, L. Dou, Chem. Soc. Rev. 2018, 47, 6046.
W. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend, A. K. Cheetham, Nat. Rev. Mater. 2017, 2, 16099.
L. Mao, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 1171.
A. G. Ricciardulli, S. Yang, J. H. Smet, M. Saliba, Nat. Mater. 2021, 20, 1325.
C. Lan, Z. Zhou, R. Wei, J. C. Ho, Mater. Today Energy 2019, 11, 61.
Y. Gao, E. Shi, S. Deng, S. B. Shiring, J. M. Snaider, C. Liang, B. Yuan, R. Song, S. M. Janke, A. Liebman-Peláez, P. Yoo, M. Zeller, B. W. Boudouris, P. Liao, C. Zhu, V. Blum, Y. Yu, B. M. Savoie, L. Huang, L. Dou, Nat. Chem. 2019, 11, 1151.
D. Pan, Y. Fu, N. Spitha, Y. Zhao, C. R. Roy, D. J. Morrow, D. D. Kohler, J. C. Wright, S. Jin, Nat. Nanotechnol. 2021, 16, 159.
L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L. W. Wang, A. P. Alivisatos, P. Yang, Science 2015, 349, 1518.
X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, Q. Bao, Small 2018, 14, 1800682.
G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982.
Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, S. Jin, J. Am. Chem. Soc. 2015, 137, 5810.
Y. Sun, Y. Yin, M. Pols, J. Zhong, Z. Huang, B. Liu, J. Liu, W. Wang, H. Xie, G. Zhan, Z. Zhou, W. Zhang, P. Wang, C. Zha, X. Jiang, Y. Ruan, C. Zhu, G. Brocks, X. Wang, L. Wang, J. Wang, S. Tao, W. Huang, Adv. Mater. 2020, 32, 2002392.
Q. Zhang, L. Chu, F. Zhou, W. Ji, G. Eda, Adv. Mater. 2018, 30, 1704055.
J. Zhang, X. Zhu, M. Wang, B. Hu, Nat. Commun. 2020, 11, 2618.
J. A. Steele, H. Jin, I. Dovgaliuk, R. F. Berger, T. Braeckevelt, H. Yuan, C. Martin, E. Solano, K. Lejaeghere, S. M. J. Rogge, C. Notebaert, W. Vandezande, K. P. F. Janssen, B. Goderis, E. Debroye, Y. K. Wang, Y. Dong, D. Ma, M. Saidaminov, H. Tan, Z. Lu, V. Dyadkin, D. Chernyshov, V. Van Speybroeck, E. H. Sargent, J. Hofkens, M. B. J. Roeffaers, Science 2019, 365, 679.
Z. Yang, Q. Xu, X. Wang, J. Lu, H. Wang, F. Li, L. Zhang, G. Hu, C. Pan, Adv. Mater. 2018, 30, 1802110.
M. Gong, R. Sakidja, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, J. Z. Wu, ACS Nano 2019, 13, 3714.
W. G. Li, X. D. Wang, J. F. Liao, Y. Jiang, D. B. Kuang, Adv. Funct. Mater. 2020, 30, 1909701.
J. Liu, Y. Xue, Z. Wang, Z. Q. Xu, C. Zheng, B. Weber, J. Song, Y. Wang, Y. Lu, Y. Zhang, Q. Bao, ACS Nano 2016, 10, 3536.
Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan, O. Voznyy, E. Yassitepe, A. Buin, S. Hoogland, E. H. Sargent, Nature 2015, 523, 324.
L. Zhao, Y. W. Yeh, N. L. Tran, F. Wu, Z. Xiao, R. A. Kerner, Y. L. Lin, G. D. Scholes, N. Yao, B. P. Rand, ACS Nano 2017, 11, 3957.
R. K. Singh, R. Kumar, N. Jain, M. T. Kuo, C. P. Upadhyaya, J. Singh, Appl. Nanosci. 2019, 9, 1953.
S. Olthof, K. Meerholz, Sci. Rep. 2017, 7, 40267.
X. Guo, C. McCleese, C. Kolodziej, A. C. S. Samia, Y. Zhao, C. Burda, Dalton Trans. 2016, 45, 3806.
O. Ochedowski, B. K. Bussmann, M. Schleberger, Sci. Rep. 2014, 4, 6003.
L. Lu, Y. Dai, H. Du, M. Liu, J. Wu, Y. Zhang, Z. Liang, S. Raza, D. Wang, C. L. Jia, Adv. Mater. Interfaces 2020, 7, 1901265.
P. Bampoulis, K. Sotthewes, M. H. Siekman, H. J. W. Zandvliet, B. Poelsema, Sci. Rep. 2017, 7, 43451.
R. A. Schoonheydt, C. T. Johnston, in Developments in Clay Science (Eds.: F.Bergaya, G.Lagaly), Vol. 5, Elsevier, 2013, pp. 139-172, https://doi.org/10.1016/B978-0-08-098258-8.00005-5.
S. Jin, Y. Liu, M. Deiseroth, J. Liu, E. H. G. Backus, H. Li, H. Xue, L. Zhao, X. C. Zeng, M. Bonn, J. Wang, J. Am. Chem. Soc. 2020, 142, 17956.
M. Fujii, B. Li, K. Fukada, T. Kato, T. Seimiya, Langmuir 2001, 17, 1138.
X. Zhang, Y. He, R. Li, H. Dong, W. Hu, Adv. Mater. 2016, 28, 3755.
C. Lan, R. Dong, Z. Zhou, L. Shu, D. Li, S. Yip, J. C. Ho, Adv. Mater. 2017, 29, 1702759.
X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie, Adv. Funct. Mater. 2014, 24, 7373.
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.