Accounting for temporal change in multiple biodiversity patterns improves the inference of metacommunity processes.
metacommunity ecology
random forests
simulation study
spatiotemporal dynamics
summary statistics
variation partitioning
Journal
Ecology
ISSN: 1939-9170
Titre abrégé: Ecology
Pays: United States
ID NLM: 0043541
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
revised:
12
10
2021
received:
03
02
2021
accepted:
07
01
2022
pubmed:
22
3
2022
medline:
3
6
2022
entrez:
21
3
2022
Statut:
ppublish
Résumé
In metacommunity ecology, a major focus has been on combining observational and analytical approaches to identify the role of critical assembly processes, such as dispersal limitation and environmental filtering, but this work has largely ignored temporal community dynamics. Here, we develop a "virtual ecologist" approach to evaluate assembly processes by simulating metacommunities varying in three main processes: density-independent responses to abiotic conditions, density-dependent biotic interactions, and dispersal. We then calculate a number of commonly used summary statistics of community structure in space and time and use random forests to evaluate their utility for inferring the strength of these three processes. We find that (i) both spatial and temporal data are necessary to disentangle metacommunity processes based on the summary statistics we test, and including statistics that are measured through time increases the explanatory power of random forests by up to 59% compared to cases where only spatial variation is considered; (ii) the three studied processes can be distinguished with different descriptors; and (iii) each summary statistic is differently sensitive to temporal and spatial sampling effort. Including repeated observations of metacommunities over time was essential for inferring the metacommunity processes, particularly dispersal. Some of the most useful statistics include the coefficient of variation of species abundances through time and metrics that incorporate variation in the relative abundances (evenness) of species. We conclude that a combination of methods and summary statistics is probably necessary to understand the processes that underlie metacommunity assembly through space and time, but we recognize that these results will be modified when other processes or summary statistics are used.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e3683Informations de copyright
© 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.
Références
Ambroise, C., and G. J. McLachlan. 2002. “Selection Bias in Gene Extraction on the Basis of Microarray Gene-Expression Data.” Proceedings of the National Academy of Sciences of the United States of America 99(10): 6562-6.
Beverton, R. J. H., and Holt, S. 1957. On the Dynamics of Exploited Fish Populations, B.V. Fish and Fisheries Series 11. Berlin/Heidelberg, Germany: Springer Science and Business Media.
Blanchet, F. G., K. C. Blanchet, and D. Gravel. 2020. “Co-occurrence Is Not Evidence of Ecological Interactions.” Ecology Letters 23(7): 1050-63.
Blanchet, F. G., P. Legendre, and D. Borcard. 2008. “Modelling Directional Spatial Processes in Ecological Data.” Ecological Modelling 215(4): 325-36.
Borcard, D., P. Legendre, and P. Drapeau. 1992. “Partialling Out the Spatial Component of Ecological Variation.” Ecology 73(3): 1045-55.
Breiman, L. 2001. “Random Forests.” Machine Learning 45: 5-32.
Brown, C., J. B. Illian, and D. F. R. P. Burslem. 2016. “Success of Spatial Statistics in Determining Underlying Process in Simulated Plant Communities.” The Journal of Ecology 104(1): 160-72.
Castillo-Escrivà, A., F. Mesquita-Joanes, and J. Rueda. 2020. “Effects of the Temporal Scale of Observation on the Analysis of Aquatic Invertebrate Metacommunities.” Frontiers in Ecology and Evolution. 8: 561838. https://doi.org/10.3389/fevo.2020.561838.
Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell, and A. M. Ellison. 2014. “Rarefaction and Extrapolation with Hill Numbers: A Framework for Sampling and Estimation in Species Diversity Studies.” Ecological Monographs 84(1): 45-67.
Chase, J. M., and M. A. Leibold. 2003. Ecological Niches: Linking Classical and Contemporary Approaches. Chicago and London: University of Chicago Press.
Chesson, P. 2000. “Mechanisms of Maintenance of Species Diversity.” Annual Review of Ecology and Systematics 31(1): 343-66.
Clappe, S., S. Dray, and P. R. Peres-Neto. 2018. “Beyond Neutrality: Disentangling the Effects of Species Sorting and Spurious Correlations in Community Analysis.” Ecology 99(8): 1737-47.
Cottenie, K. 2005. “Integrating Environmental and Spatial Processes in Ecological Community Dynamics.” Ecology Letters 8(11): 1175-82.
Dornelas, M., L. H. Antão, F. Moyes, A. E. Bates, and A. E. Magurran. 2018. “BioTIME: A Database of Biodiversity Time Series for the Anthropocene.” Global Ecology and Biogeography: A Journal of Macroecology 27(7): 760-86.
Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, et al. 2019. “Adespatial: Multivariate Multiscale Spatial Analysis (version 0.3-7).” R. https://CRAN.R-project.org/package=adespatial.
Ehrlén, J., and O. Eriksson. 2000. “Dispersal Limitation and Patchy Occupancy in Forest Herbs.” Ecology 81(6): 1667-74.
Gilbert, B., and J. R. Bennett. 2010. “Partitioning Variation in Ecological Communities: Do the Numbers Add Up?” Journal of Applied Ecology 47(5): 1071-82.
Guzman, L. M. 2022. “lmguzman/disentangling_metacommunities: First Release (Version V1).” Zenodo. https://doi.org/10.5281/zenodo.5842513.
Guzman, L. M., R. M. Germain, C. Forbes, S. Straus, M. I. O'Connor, D. Gravel, D. S. Srivastava, and P. L. Thompson. 2019. “Towards a Multi-Trophic Extension of Metacommunity Ecology.” Ecology Letters 22(1): 19-33.
Hill, M. O. 1973. “Diversity and Evenness: A Unifying Notation and its Consequences.” Ecology 54(2): 427-32.
Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Monographs in Population Biology, Vol 32. Princeton, NJ: Princeton University Press.
Jabot, F., F. Laroche, F. Massol, F. Arthaud, J. Crabot, M. Dubart, S. Blanchet, F. Munoz, P. David, and T. Datry. 2020. “Assessing Metacommunity Processes through Signatures in Spatiotemporal Turnover of Community Composition.” Ecology Letters 23(9): 1330-9.
Legendre, P. 2014. “Interpreting the Replacement and Richness Difference Components of Beta Diversity.” Global Ecology and Biogeography 23(11): 1324-34.
Leibold, M. A., and J. M. Chase. 2017. Metacommunity Ecology. Princeton and London: Princeton University Press.
Leibold, M. A., F. Javiera Rudolph, F. Guillaume Blanchet, L. De Meester, D. Gravel, F. Hartig, P. Peres-Neto, L. Shoemaker, and J. M. Chase. 2022. “The Internal Structure of Metacommunities” Oikos 2022(1), https://doi.org/10.1111/oik.08618
Liaw, A., and M. Wiener. 2002. “Classification and Regression by randomForest.” R News 2(3): 18-22.
Loreau, M., N. Mouquet, and A. Gonzalez. 2003. “Biodiversity as Spatial Insurance in Heterogeneous Landscapes.” Proceedings of the National Academy of Sciences of the United States of America 100(22): 12765-70.
May, F., A. Huth, and T. Wiegand. 2015. “Moving beyond Abundance Distributions: Neutral Theory and Spatial Patterns in a Tropical Forest.” Proceedings. Biological Sciences / The Royal Society 282(1802): 20141657. https://doi.org/10.1098/rspb.2014.1657.
Monteiro, V. F., P. C. Paiva, and P. R. Peres-Neto. 2017. “A Quantitative Framework to Estimate the Relative Importance of Environment, Spatial Variation and Patch Connectivity in Driving Community Composition.” The Journal of Animal Ecology 86(2): 316-26.
Münkemüller, T., F. de Bello, C. N. Meynard, D. Gravel, S. Lavergne, D. Mouillot, N. Mouquet, and W. Thuiller. 2012. “From Diversity Indices to Community Assembly Processes: A Test with Simulated Data.” Ecography 35(5): 468-80.
O'Dwyer, J. P., and S. J. Cornell. 2018. “Cross-Scale Neutral Ecology and the Maintenance of Biodiversity.” Scientific Reports 8(1): 10200.
Ovaskainen, O., J. Rybicki, and N. Abrego. 2019. “What Can Observational Data Reveal about Metacommunity Processes?” Ecography 42(11): 1877-86.
Ovaskainen, O., G. Tikhonov, F. Anna Norberg, G. Blanchet, L. Duan, D. Dunson, T. Roslin, and N. Abrego. 2017. “How to Make More out of Community Data? A Conceptual Framework and its Implementation as Models and Software.” Ecology Letters 20(5): 561-76.
Pennell, M. W., R. G. FitzJohn, W. K. Cornwell, and L. J. Harmon. 2015. “Model Adequacy and the Macroevolution of Angiosperm Functional Traits.” The American Naturalist 186(2): E33-50.
Peres-Neto, P. R., and P. Legendre. 2010. “Estimating and Controlling for Spatial Structure in the Study of Ecological Communities.” Global Ecology 19(2): 174-84.
Podani, J., and D. Schmera. 2011. “A New Conceptual and Methodological Framework for Exploring and Explaining Pattern in Presence - Absence Data.” Oikos 120(11): 1625-38.
Pontarp, M., Å. Brännström, and O. L. Petchey. 2019. “Inferring Community Assembly Processes from Macroscopic Patterns Using Dynamic Eco-Evolutionary Models and Approximate Bayesian Computation (ABC).” Methods in Ecology and Evolution 10(4): 450-60.
Schmera, D., J. Podani, and P. Legendre. 2020. “What Do Beta Diversity Components Reveal from Presence-Absence Community Data? Let us Connect every Indicator to an Indicandum!” Ecological Indicators 117: 106540.
Shoemaker, L. G., L. L. Sullivan, I. Donohue, J. S. Cabral, R. J. Williams, M. M. Mayfield, J. M. Chase, et al. 2020. “Integrating the Underlying Structure of Stochasticity into Community Ecology.” Ecology 101(2): e02922.
Soininen, J. 2014. “A Quantitative Analysis of Species Sorting across Organisms and Ecosystems.” Ecology 95(12): 3284-92.
Soininen, J. 2016. “Spatial Structure in Ecological Communities - A Quantitative Analysis.” Oikos 125(2): 160-6.
Sokol, E. R., B. L. Brown, and J. E. Barrett. 2017. “A Simulation-Based Approach to Understand how Metacommunity Characteristics Influence Emergent Biodiversity Patterns.” Oikos 126(5): 723-37. https://doi.org/10.1111/oik.03690.
Svetnik, V., A. Liaw, C. Tong, and T. Wang. 2004. “Application of Breiman's Random Forest to Modeling Structure-Activity Relationships of Pharmaceutical Molecules.” In Multiple Classifier Systems. Lecture Notes in Computer Science, Vol 3077, edited by F. Roli, J. Kittler, and T. Windeatt, 334-43. Berlin and Heidelberg: Springer.
Tatsumi, S., J. Strengbom, M. Čugunovs, and J. Kouki. 2020. “Partitioning the Colonization and Extinction Components of Beta Diversity across Disturbance Gradients.” Ecology 101(12): e03183.
Thompson, P. L., L. M. Guzman, L. De Meester, Z. Horváth, R. Ptacnik, B. Vanschoenwinkel, D. S. Viana, and J. M. Chase. 2020. “A Process-Based Metacommunity Framework Linking Local and Regional Scale Community Ecology.” Ecology Letters 23(9): 1314-29.
Thompson, P. L., B. Rayfield, and A. Gonzalez. 2017. “Loss of Habitat and Connectivity Erodes Species Diversity, Ecosystem Functioning, and Stability in Metacommunity Networks.” Ecography 40(1): 98-108.
Tikhonov, G., O. Opedal, N. Abrego, A. Lehikoinen, and O. Ovaskainen. 2020. “Joint Species Distribution Modelling with HMSC-R.” Methods in Ecology and Evolution 11(3): 442-7.
Tilman, D. 1982. “Resource Competition and Community Structure.” Monographs in Population Biology 17: 1-296.
Tilman, D. 1995. “Biodiversity: Population Versus Ecosystem Stability.” Ecology 77(2): 350-63.
Tuomisto, H. 2010. “A Diversity of Beta Diversities: Straightening up a Concept Gone Awry. Part 1. Defining Beta Diversity as a Function of Alpha and Gamma Diversity.” Ecography 33(1): 2-22.
Viana, D. S., P. Keil, and A. Jeliazkov. In Press. “Disentangling Spatial and Environmental Effects: Flexible Methods for Community Ecology and Macroecology.” Ecosphere. https://doi.org/10.1002/ecs2.4028.
Zurell, D., U. Berger, J. S. Cabral, F. Jeltsch, C. N. Meynard, T. Münkemüller, N. Nehrbass, et al. 2010. “The Virtual Ecologist Approach: Simulating Data and Observers.” Oikos 119(4): 622-35.