Development and Validation of a Machine Learning-Based Radiomics Model on Cardiac Computed Tomography of Epicardial Adipose Tissue in Predicting Characteristics and Recurrence of Atrial Fibrillation.
atrial fibrillation
computed tomography angiography
epicardial adipose tissue
radiomics approach
recurrence
Journal
Frontiers in cardiovascular medicine
ISSN: 2297-055X
Titre abrégé: Front Cardiovasc Med
Pays: Switzerland
ID NLM: 101653388
Informations de publication
Date de publication:
2022
2022
Historique:
received:
11
11
2021
accepted:
08
02
2022
entrez:
21
3
2022
pubmed:
22
3
2022
medline:
22
3
2022
Statut:
epublish
Résumé
This study aimed to evaluate the feasibility of differentiating the atrial fibrillation (AF) subtype and preliminary explore the prognostic value of AF recurrence after ablation using radiomics models based on epicardial adipose tissue around the left atrium (LA-EAT) of cardiac CT images. The cardiac CT images of 314 patients were collected wherein 251 and 63 cases were randomly enrolled in the training and validation cohorts, respectively. Mutual information and the random forest algorithm were used to screen for the radiomic features and construct the radiomics signature. Radiomics models reflecting the features of LA-EAT were built to differentiate the AF subtype, and the multivariable logistic regression model was adopted to integrate the radiomics signature and volume information. The same methodology and algorithm were applied to the radiomic features to explore the ability for predicting AF recurrence. The predictive model constructed by integrating the radiomic features and volume information using a radiomics nomogram showed the best ability in differentiating AF subtype in the training [AUC, 0.915; 95% confidence interval (CI), 0.880-0.951] and validation (AUC, 0.853; 95% CI, 0.755-0.951) cohorts. The radiomic features have shown convincible predictive ability of AF recurrence in both training (AUC, 0.808; 95% CI, 0.750-0.866) and validation (AUC, 0.793; 95% CI, 0.654-0.931) cohorts. The LA-EAT radiomic signatures are a promising tool in the differentiation of AF subtype and prediction of AF recurrence, which may have clinical implications in the early diagnosis of AF subtype and disease management.
Identifiants
pubmed: 35310976
doi: 10.3389/fcvm.2022.813085
pmc: PMC8927627
doi:
Types de publication
Journal Article
Langues
eng
Pagination
813085Informations de copyright
Copyright © 2022 Yang, Cao, Xu, Ge, Li, Yan and Yang.
Déclaration de conflit d'intérêts
ZX and YG were employed by Siemens Healthineers Computed Tomography Collaboration, Shanghai, China. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Am J Cardiol. 2013 Aug 15;112(4):513-9
pubmed: 23672989
Chest. 2015 Jun;147(6):1644-1650
pubmed: 25429521
J Cardiol. 2016 Nov;68(5):406-411
pubmed: 26685730
Eur Heart J. 2016 Oct 7;37(38):2893-2962
pubmed: 27567408
Am J Cardiol. 2018 Nov 15;122(10):1694-1700
pubmed: 30244845
J Am Coll Cardiol. 2011 Apr 26;57(17):1745-51
pubmed: 21511110
Nat Commun. 2014 Jun 03;5:4006
pubmed: 24892406
Circ Cardiovasc Imaging. 2019 Jun;12(6):e008764
pubmed: 31177816
Circulation. 2014 Dec 2;130(23):e199-267
pubmed: 24682347
Cardiovasc Diabetol. 2006 Jan 13;5:1
pubmed: 16412224
Eur Radiol. 2019 Sep;29(9):4742-4750
pubmed: 30778717
J Am Heart Assoc. 2016 Mar 08;5(3):e002197
pubmed: 26955859
Am J Cardiol. 1995 Aug 15;76(5):414-8
pubmed: 7639175
Sci Rep. 2017 Oct 5;7(1):12716
pubmed: 28983076
Horm Metab Res. 2008 Jul;40(7):442-5
pubmed: 18401833
Eur Heart J. 2017 May 1;38(17):1294-1302
pubmed: 26935271
Thromb Res. 2003;111(3):137-42
pubmed: 14678810
Circ J. 2018 Jun 25;82(7):1778-1787
pubmed: 29806623
J Cardiol. 2015 Apr;65(4):285-92
pubmed: 25578786
J Am Coll Cardiol. 2016 Dec 13;68(23):2508-2521
pubmed: 27931607
Arq Bras Cardiol. 2017 Jul;109(1):14-22
pubmed: 28678926
Clin Res Cardiol. 2013 Aug;102(8):555-62
pubmed: 23584714
Heart Rhythm. 2017 Oct;14(10):e275-e444
pubmed: 28506916
Circ Cardiovasc Imaging. 2017 Dec;10(12):
pubmed: 29233836
JAMA. 2001 May 9;285(18):2370-5
pubmed: 11343485
Circ Arrhythm Electrophysiol. 2010 Jun;3(3):230-6
pubmed: 20504944
J Cardiovasc Electrophysiol. 2011 Jun;22(6):647-55
pubmed: 21235672
Eur Heart J. 2015 Apr 1;36(13):795-805a
pubmed: 23525094
Infect Dis Model. 2020 Jan 07;5:111-128
pubmed: 31956740
Ann Oncol. 2017 Jun 1;28(6):1191-1206
pubmed: 28168275
Circulation. 2003 Nov 18;108(20):2460-6
pubmed: 14581396
Am J Cardiol. 2014 May 1;113(9):1505-8
pubmed: 24656480
PLoS One. 2019 May 7;14(5):e0216480
pubmed: 31063500
Eur J Radiol. 2019 Jul;116:98-105
pubmed: 31153581
JACC Cardiovasc Imaging. 2019 Oct;12(10):1946-1954
pubmed: 30660549
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762
pubmed: 28975929