Comparison of Bovine and Carp Fish Visual Pigment Photo-Intermediates at Room Temperature.


Journal

Photochemistry and photobiology
ISSN: 1751-1097
Titre abrégé: Photochem Photobiol
Pays: United States
ID NLM: 0376425

Informations de publication

Date de publication:
11 2022
Historique:
received: 21 01 2022
accepted: 17 03 2022
pubmed: 22 3 2022
medline: 15 11 2022
entrez: 21 3 2022
Statut: ppublish

Résumé

This paper presents room temperature nanoseconds to milliseconds time-resolved spectra and kinetics of the intermediate states and species of bovine and carp fish rhodopsin visual pigments, which also contained ~5% cone pigments. The nanoseconds to milliseconds range cover all the major intermediates in the visual phototransduction process except the formation of bathorhodopsin intermediate which occurs at the femtosecond time scale. The dynamics of these visual pigment intermediates are initiated by excitation with a 532 nm nanosecond laser pulse. The recorded differences between bovine and carp rhodopsin time-resolved spectra of the formation and decay kinetics of their intermediates are presented and discussed. The data show that the carp samples batho intermediate decays faster, nearly by a factor of three, compared to the bovine samples. The formation and decay spectra and kinetics of rhodopsin outer segments and extracted rhodopsin inserted in buffer solution were found to be identical, with very small differences between them in the decay lifetimes of bathorhodopsin and formation of lumirhodopsin.

Identifiants

pubmed: 35313014
doi: 10.1111/php.13621
doi:

Substances chimiques

Rhodopsin 9009-81-8

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1303-1311

Informations de copyright

© 2022 American Society for Photobiology.

Références

Young, T. (1802) II. The Bakerian lecture. On the theory of light and colours. Phil. Trans. R. Soc. 92, 12-48.
Wald, G. (1934) Carotenoids and the vitamin A cycle in vision. Nature 134(3376), 65.
Wald, G. (1935) The visual purple system in marine fishes. Nature 136(3449), 913.
Wald, G. (1937) Visual purple system in fresh-water fishes. Nature 139(3528), 1017-1018.
Wald, G. (1943) The photoreceptor function of the carotenoids and vitamins A. In Vitamins & Hormones, vol. 1. (Edited by R. S. Harris, K. V. Thimann and E. V. McCollum), pp. 195-227. Academic Press.
Hubbard, R. and G. Wald (1951) The mechanism of rhodopsin synthesis. Proc. Natl Acad. Sci. USA 37(2), 69-79.
Van Hooser, J. P., T. S. Aleman, Y. G. He, A. V. Cideciyan, V. Kuksa, S. J. Pittler, E. M. Stone, S. G. Jacobson and K. Palczewski (2000) Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness (in eng). Proc Natl Acad Sci USA 97(15), 8623-8628.
Palczewski, K., T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto and M. Miyano (2000) Crystal structure of rhodopsin: A G protein-coupled receptor (in eng). Science 289(5480), 739-745.
Wald, G. and P. K. Brown (1953) The molar extinction of rhodopsin (in eng). J. General Physiol. 37(2), 189-200.
Brown, P. K. (1961) A system for microspectrophotometry employing a commercial recording spectrophotometer. J. Opt. Soc. Am. 51(9), 1000-1008.
Brown, P. K. and G. Wald (1963) Visual pigments in human and monkey retinas. Nature 200(4901), 37-43.
Brown, P. K. and G. Wald (1964) Visual pigments in single rods and cones of the human retina. Science 144(3614), 45-52.
Marks, W. B., W. H. Dobelle and E. F. MacNichol (1964) Visual pigments of single primate cones. Science 143(3611), 1181-1182.
Bowmaker, J. K. and H. J. Dartnall (1980) Visual pigments of rods and cones in a human retina (in eng). J. Physiol. 298, 501-511.
Nathans, J., D. Thomas and D. S. Hogness (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232(4747), 193-202.
Yokoyama, S. (2000) Molecular evolution of vertebrate visual pigments. Prog. Retin. Eye Res. 19(4), 385-419.
Bowmaker, J. K. (2000) Evolution of vertebrate visual pigments (in eng). Vision Res. 48(20), 2022-2041.
Fain, G. L. (2015) Phototransduction: Making the chromophore to see through the Murk. Curr. Biol. 25(23), R1126-R1127.
Wilkie, S. E., P. R. Robinson, T. W. Cronin, S. Poopalasundaram, J. K. Bowmaker and D. M. Hunt (2000) Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments (in eng). Biochemistry 39(27), 7895-7901.
Hárosi, F. I. (1994) An analysis of two spectral properties of vertebrate visual pigments (in eng). Vision Res. 34(11), 1359-1367.
Parry, J. W. and J. K. Bowmaker (2000) Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers (in eng). Vision Res. 40(17), 2241-2247.
Bridges, C. D. B. (1972) The rhodopsin-porphyropsin visual system. In Photochemistry of Vision (Edited by H. J. A. Dartnall), pp. 417-480. Springer, Berlin, Heidelberg.
Enright, J. M., M. B. Toomey, S.-Y. Sato, S. E. Temple, J. R. Allen, R. Fujiwara, V. M. Kramlinger, L. D. Nagy, K. M. Johnson, Y. Xiao, M. J. How, S. L. Johnson, N. W. Roberts, V. J. Kefalov, F. P. Guengerich and J. C. Corbo (2015) Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr. Biol. 25(23), 3048-3057.
Busch, G. E., M. L. Applebury, A. A. Lamola and P. M. Rentzepis (1972) Formation and decay of prelumirhodopsin at room temperatures. Proc Natl Acad Sci USA 69(10), 2802-2806.
Bensasson, R., E. J. Land and T. G. Truscott (1975) Nanosecond flash photolysis of rhodopsin. Nature 258(5537), 768-770.
Peters, K., M. L. Applebury and P. M. Rentzepis (1977) Primary photochemical event in vision: proton translocation. Proc. Natl Acad. Sci. USA 74(8), 3119-3123.
Rentzepis, P. M. (1978) Picosecond spectroscopy in biological systems. In Methods in Enzymology, Vol. 54 (Edited by S. P. Colowick and N. O. Kaplan), pp. 3-32. Academic Press.
Horwitz, J. S., J. W. Lewis, M. A. Powers and D. S. Kliger (1983) Nanosecond laser photolysis of rhodopsin and isorhodopsin. Photochem. Photobiol. 37(2), 181-188.
Thomas, Y. G., I. Szundi, J. W. Lewis and D. S. Kliger (2009) Microsecond time-resolved circular dichroism of rhodopsin photointermediates. Biochemistry 48(51), 12283-12289.
Smitienko, O. A., M. N. Mozgovaya, I. V. Shelaev, F. E. Gostev, T. B. Feldman, V. A. Nadtochenko, O. M. Sarkisov and M. A. Ostrovsky (2010) Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin. Biochemistry 75(1), 25-35.
Ernst, O. P., D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown and H. Kandori (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114(1), 126-163.
Sandberg, M. N., J. A. Greco, N. L. Wagner, T. L. Amora, L. A. Ramos, M.-H. Chen, B. E. Knox and R. R. Birge (2014) Low-temperature trapping of photointermediates of the rhodopsin E181Q mutant (in eng). SOJ Biochem. 1(1), 12.
Feldman, T. B., O. A. Smitienko, I. V. Shelaev, F. E. Gostev, O. V. Nekrasova, D. A. Dolgikh, V. A. Nadtochenko, M. P. Kirpichnikov and M. A. Ostrovsky (2016) Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. J. Photochem. Photobiol. B 164, 296-305.
Olchawa, M., O. Krzysztynska-Kuleta, M. Duda, A. Pawlak, P. Pabisz, B. Czuba-Pelech and T. Sarna (2019) In vitro phototoxicity of rhodopsin photobleaching products in the retinal pigment epithelium (RPE). Free Radical Res. 53(4), 456-471.
Tahara, S., H. Kuramochi, S. Takeuchi and T. Tahara (2019) Protein dynamics preceding photoisomerization of the retinal chromophore in bacteriorhodopsin revealed by deep-UV femtosecond stimulated raman spectroscopy. J. Phys. Chem. Lett. 10(18), 5422-5427.
Ostrovsky, M. A. and V. A. Nadtochenko (2021) Femtochemistry of Rhodopsins. Russian J. Phys. Chem. B 15(2), 344-351.
Yun, J. H., X. Li, J. Yue, J.-H. Park, Z. Jin, C. Li, H. Hu, Y. Shi, S. Pandey, S. Carbajo, S. Boutet, M. S. Hunter, M. Liang, R. G. Sierra, T. J. Lane, L. Zhou, U. Weierstall, N. A. Zatsepin, M. Ohki, J. R. H. Tame, S.-Y. Park, J. C. H. Spence, W. Zhang, M. Schmidt, W. Lee and H. Liu (2021) Early-stage dynamics of chloride ion-pumping rhodopsin revealed by a femtosecond X-ray laser. Proc Natl Acad Sci USA 118(13), e2020486118.
Yoshizawa, T. and G. Wald (1963) Pre-lumirhodopsin and the bleaching of visual pigments. Nature 197(4874), 1279-1286.
Yoshizawa, T. and G. Wald (1964) Transformations of squid rhodopsin at low temperatures. Nature 201(4917), 340-345.
Rentzepis, P. M. (1969) Emission from the lowest singlet and triplet states of azulene. Chem. Phys. Lett. 3(9), 717-720.
Netzel, T. L., P. M. Rentzepis and J. Leigh (1973) Picosecond kinetics of reaction centers containing bacteriochlorophyll. Science 182(4109), 238-241.
Huppert, D., P. M. Rentzepis and G. Tollin (1976) Picosecond kinetics of chlorophyll and chlorophyll/quinone solutions in ethanol (in eng). Biochim Biophys Acta 440(2), 356-364.
Applebury, M. L., K. S. Peters and P. M. Rentzepis (1978) Primary intermediates in the photochemical cycle of bacteriorhodopsin. Biophys. J. 23(3), 375-382.
Wang, J. S. and V. J. Kefalov (2011) The cone-specific visual cycle (in eng). Prog Retin Eye Res. 30(2), 115-128.
Howlett, M. H., R. G. Smith and M. Kamermans (2017) A novel mechanism of cone photoreceptor adaptation (in eng). PLoS Biol. 15(4), e2001210.
Sinha, R., M. Hoon, J. Baudin, H. Okawa, R. O. L. Wong and F. Rieke (2017) Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168(3), 413-426.e12.
Baudin, J., J. M. Angueyra, R. Sinha and F. Rieke (2019) S-cone photoreceptors in the primate retina are functionally distinct from L and M cones. eLife 8, e39166.
Berry, M. H., A. Holt, A. Salari, J. Veit, M. Visel, J. Levitz, K. Aghi, B. M. Gaub, B. Sivyer, J. G. Flannery and E. Y. Isacoff (2019) Restoration of high-sensitivity and adapting vision with a cone opsin. Nat. Commun. 10(1), 1221.
Cao, Y., Y. Wang, H. A. Dunn, C. Orlandi, N. Shultz, N. Kamasawa, D. Fitzpatrick, W. Li, C. Zeitz, W. Hauswirth and K. A. Martemyanov (2020) Interplay between cell-adhesion molecules governs synaptic wiring of cone photoreceptors. Proc Natl Acad Sci USA 117(38), 23914-23924.
Imamoto, Y., I. Seki, T. Yamashita and Y. Shichida (2013) Efficiencies of activation of transducin by cone and rod visual pigments. Biochemistry 52(17), 3010-3018.
Mooney, V. L., I. Szundi, J. W. Lewis, E. C. Y. Yan and D. S. Kliger (2012) Schiff base protonation changes in Siberian hamster ultraviolet cone pigment photointermediates (in eng). Biochemistry 51(12), 2630-2637.
Sato, K., T. Yamashita, Y. Imamoto and Y. Shichida (2012) Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment. Biochemistry 51(21), 4300-4308.
Yoshizawa, T. (1972) The behaviour of visual pigments at low temperatures. In Photochemistry of Vision (Edited by H. J. A. Dartnall), pp. 146-179. Springer, Berlin Heidelberg.
Palczewski, K. (2006) G protein-coupled receptor rhodopsin (in eng). Annu. Rev. Biochem. 75, 743-767.
Tachibanaki, S., H. Imai, T. Mizukami, T. Okada, Y. Imamoto, T. Matsuda, Y. Fukada, A. Terakita and Y. Shichida (1997) Presence of two rhodopsin intermediates responsible for transducin activation (in eng). Biochemistry 36(46), 14173-14180.
Shichida, Y. and T. Morizumi (2007) Mechanism of G-protein activation by rhodopsin†. Photochem. Photobiol. 83(1), 70-75.
Imai, H., A. Terakita, S. Tachibanaki, Y. Imamoto, T. Yoshizawa and Y. Shichida (1997) Photochemical and biochemical properties of chicken blue-sensitive cone visual pigment. Biochemistry 36(42), 12773-12779.
Tachibanaki, S., S. Tsushima and S. Kawamura (2001) Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses. Proc. Natl Acad. Sci. 98(24), 14044.
Fukagawa, T., K. Takafuji, S. Tachibanaki and S. Kawamura (2017) Purification of cone outer segment for proteomic analysis on its membrane proteins in carp retina. PLoS One 12(3), e0173908.
Epps, J., J. W. Lewis, I. Szundi and D. S. Kliger (2006) Lumi I -> Lumi II: the last detergent independent process in rhodopsin photoexcitationt (in eng). Photochem. Photobiol. 82(6), 1436-1441.
Milder, S. J. and D. S. Kliger (1986) A new approach to understanding the initial step in visual transduction (in eng). Biophys. J. 49(2), 567-570.
Lewis, J. W., G. B. Fan, M. Sheves, I. Szundi and D. S. Kliger (2001) Steric barrier to bathorhodopsin decay in 5-demethyl and mesityl analogues of rhodopsin. J. Am. Chem. Soc 123(41), 10024-10029.
Owen, T. S., D. Salom, W. Sun and K. Palczewski (2018) Increasing the stability of recombinant human green cone pigment. Biochemistry 57(6), 1022-1030.
Einterz, C. M., J. W. Lewis and D. S. Kliger (1987) Spectral and kinetic evidence for the existence of two forms of bathorhodopsin (in eng). Proc. Natl Acad. Sci. USA 84(11), 3699-3703.
Yan, E. C. Y., M. A. Kazmi, Z. Ganim, J.-M. Hou, D. Pan, B. S. W. Chang, T. P. Sakmar and R. A. Mathies (2003) Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Pro.c Natl Acad. Sci. USA 100(16), 9262-9267.
Corbo, J. C. (2021) Vitamin A1/A2 chromophore exchange: Its role in spectral tuning and visual plasticity. Dev. Biol. 475, 145-155.

Auteurs

Dinesh Dhankhar (D)

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.

Anushka Nagpal (A)

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.

Shuji Tachibanaki (S)

Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.

Runze Li (R)

School of Physical Science and Technology, Shanghai Tech University, Shanghai, China.

Thomas C Cesario (TC)

School of Medicine, University of California, Irvine, CA, USA.

Peter M Rentzepis (PM)

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH