The induction of natural competence adapts staphylococcal metabolism to infection.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
21 03 2022
Historique:
received: 01 09 2020
accepted: 03 03 2022
entrez: 22 3 2022
pubmed: 23 3 2022
medline: 13 4 2022
Statut: epublish

Résumé

A central question concerning natural competence is why orthologs of competence genes are conserved in non-competent bacterial species, suggesting they have a role other than in transformation. Here we show that competence induction in the human pathogen Staphylococcus aureus occurs in response to ROS and host defenses that compromise bacterial respiration during infection. Bacteria cope with reduced respiration by obtaining energy through fermentation instead. Since fermentation is energetically less efficient than respiration, the energy supply must be assured by increasing the glycolytic flux. The induction of natural competence increases the rate of glycolysis in bacteria that are unable to respire via upregulation of DNA- and glucose-uptake systems. A competent-defective mutant showed no such increase in glycolysis, which negatively affects its survival in both mouse and Galleria infection models. Natural competence foster genetic variability and provides S. aureus with additional nutritional and metabolic possibilities, allowing it to proliferate during infection.

Identifiants

pubmed: 35314690
doi: 10.1038/s41467-022-29206-7
pii: 10.1038/s41467-022-29206-7
pmc: PMC8938553
doi:

Substances chimiques

Bacterial Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1525

Informations de copyright

© 2022. The Author(s).

Références

Kluytmans, J., van Belkum, A. & Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10, 505–520 (1997).
pubmed: 9227864 pmcid: 172932 doi: 10.1128/CMR.10.3.505
Otto, M. MRSA virulence and spread. Cell. Microbiol. 14, 1513–1521 (2012).
pubmed: 22747834 pmcid: 3443268 doi: 10.1111/j.1462-5822.2012.01832.x
Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 4, 18033 (2018).
pubmed: 29849094 doi: 10.1038/nrdp.2018.33
Somerville, G. A. & Proctor, R. A. At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol. Mol. Biol. Rev. 73, 233–248 (2009).
pubmed: 19487727 pmcid: 2698418 doi: 10.1128/MMBR.00005-09
Vitko, N. P., Spahich, N. A. & Richardson, A. R. Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus. mBio 6, https://doi.org/10.1128/mBio.00045-15 (2015).
Richardson, A. R., Libby, S. J. & Fang, F. C. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319, 1672–1676 (2008).
pubmed: 18356528 doi: 10.1126/science.1155207
Beavers, W. N. & Skaar, E. P. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog. Dis. 74, https://doi.org/10.1093/femspd/ftw060 (2016).
Ezraty, B., Gennaris, A., Barras, F. & Collet, J. F. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 15, 385–396 (2017).
pubmed: 28420885 doi: 10.1038/nrmicro.2017.26
Jang, S. & Imlay, J. A. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron–sulfur enzymes. J. Biol. Chem. 282, 929–937 (2007).
pubmed: 17102132 doi: 10.1074/jbc.M607646200
Keyer, K. & Imlay, J. A. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl Acad. Sci. USA 93, 13635–13640 (1996).
pubmed: 8942986 pmcid: 19375 doi: 10.1073/pnas.93.24.13635
Taylor, C. T. & Colgan, S. P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 17, 774–785 (2017).
pubmed: 28972206 pmcid: 5799081 doi: 10.1038/nri.2017.103
Becker, K. W. & Skaar, E. P. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol. Rev. 38, 1235–1249 (2014).
pubmed: 25211180 doi: 10.1111/1574-6976.12087
Skaar, E. P., Humayun, M., Bae, T., DeBord, K. L. & Schneewind, O. Iron-source preference of Staphylococcus aureus infections. Science 305, 1626–1628 (2004).
pubmed: 15361626 doi: 10.1126/science.1099930
Loss, G. et al. Staphylococcus aureus small colony variants (SCVs): news from a chronic prosthetic joint infection. Front. Cell. Infect. Microbiol. 9, 363 (2019).
pubmed: 31696062 pmcid: 6817495 doi: 10.3389/fcimb.2019.00363
Kahl, B. C., Becker, K. & Loffler, B. Clinical significance and pathogenesis of Staphylococcal small colony variants in persistent infections. Clin. Microbiol. Rev. 29, 401–427 (2016).
pubmed: 26960941 pmcid: 4786882 doi: 10.1128/CMR.00069-15
Vitko, N. P., Grosser, M. R., Khatri, D., Lance, T. R. & Richardson, A. R. Expanded glucose import capability affords Staphylococcus aureus optimized glycolytic flux during infection. mBio 7, https://doi.org/10.1128/mBio.00296-16 (2016).
Psychogios, N. et al. The human serum metabolome. PLoS ONE 6, e16957 (2011).
pubmed: 21359215 pmcid: 3040193 doi: 10.1371/journal.pone.0016957
Muller, L. M. et al. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis. 41, 281–288 (2005).
pubmed: 16007521 doi: 10.1086/431587
Movahed, M. R., Hashemzadeh, M. & Jamal, M. M. Increased prevalence of infectious endocarditis in patients with type II diabetes mellitus. J. Diabetes Complicat. 21, 403–406 (2007).
doi: 10.1016/j.jdiacomp.2007.07.003
Kourany, W. M. et al. Influence of diabetes mellitus on the clinical manifestations and prognosis of infective endocarditis: a report from the International Collaboration on Endocarditis-Merged Database. Scand. J. Infect. Dis. 38, 613–619 (2006).
pubmed: 16857604 doi: 10.1080/00365540600617017
Equils, O., da Costa, C., Wible, M. & Lipsky, B. A. The effect of diabetes mellitus on outcomes of patients with nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus: data from a prospective double-blind clinical trial comparing treatment with linezolid versus vancomycin. BMC Infect. Dis. 16, 476 (2016).
pubmed: 27600290 pmcid: 5011934 doi: 10.1186/s12879-016-1779-5
Dunyach-Remy, C., Ngba Essebe, C., Sotto, A. & Lavigne, J. P. Staphylococcus aureus toxins and diabetic foot ulcers: role in pathogenesis and interest in diagnosis. Toxins 8, https://doi.org/10.3390/toxins8070209 (2016).
Finkel, S. E. & Kolter, R. DNA as a nutrient: novel role for bacterial competence gene homologs. J. Bacteriol. 183, 6288–6293 (2001).
pubmed: 11591672 pmcid: 100116 doi: 10.1128/JB.183.21.6288-6293.2001
Redfield, R. J. Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J. Hered. 84, 400–404 (1993).
pubmed: 8409360 doi: 10.1093/oxfordjournals.jhered.a111361
Palchevskiy, V. & Finkel, S. E. Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J. Bacteriol. 188, 3902–3910 (2006).
pubmed: 16707682 pmcid: 1482900 doi: 10.1128/JB.01974-05
Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2, 241–249 (2004).
pubmed: 15083159 doi: 10.1038/nrmicro844
Morikawa, K. et al. A new staphylococcal sigma factor in the conserved gene cassette: functional significance and implication for the evolutionary processes. Genes Cells 8, 699–712 (2003).
pubmed: 12875655 doi: 10.1046/j.1365-2443.2003.00668.x
Domenech, A. et al. Proton motive force disruptors block bacterial competence and horizontal gene transfer. Cell Host Microbe 27, 544–555 e543 (2020).
pubmed: 32130952 doi: 10.1016/j.chom.2020.02.002
Rabinovich, L., Sigal, N., Borovok, I., Nir-Paz, R. & Herskovits, A. A. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 150, 792–802 (2012).
pubmed: 22901809 doi: 10.1016/j.cell.2012.06.036
Wydau, S., Dervyn, R., Anba, J., Dusko Ehrlich, S. & Maguin, E. Conservation of key elements of natural competence in Lactococcus lactis ssp. FEMS Microbiol. Lett. 257, 32–42 (2006).
pubmed: 16553829 doi: 10.1111/j.1574-6968.2006.00141.x
Morikawa, K. et al. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog. 8, e1003003 (2012).
pubmed: 23133387 pmcid: 3486894 doi: 10.1371/journal.ppat.1003003
Hahn, J., Luttinger, A. & Dubnau, D. Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis. Mol. Microbiol. 21, 763–775 (1996).
pubmed: 8878039 doi: 10.1046/j.1365-2958.1996.371407.x
Thi le, T. N., Romero, V. M. & Morikawa, K. Cell wall-affecting antibiotics modulate natural transformation in SigH-expressing Staphylococcus aureus. J. Antibiot. 69, 464–466 (2016).
doi: 10.1038/ja.2015.132
Cafini, F. et al. Methodology for the study of horizontal gene transfer in Staphylococcus aureus. J. Vis. Exp. https://doi.org/10.3791/55087 (2017).
Nguyen, L. T. T., Takemura, A. J., Ohniwa, R. L., Saito, S. & Morikawa, K. Sodium polyanethol sulfonate modulates natural transformation of SigH-expressing Staphylococcus aureus. Curr. Microbiol. 75, 499–504 (2018).
pubmed: 29209822 doi: 10.1007/s00284-017-1409-5
Fagerlund, A., Granum, P. E. & Havarstein, L. S. Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol. Microbiol. 94, 557–579 (2014).
pubmed: 25155269 doi: 10.1111/mmi.12767
van Sinderen, D., ten Berge, A., Hayema, B. J., Hamoen, L. & Venema, G. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol. Microbiol. 11, 695–703 (1994).
pubmed: 8196543 doi: 10.1111/j.1365-2958.1994.tb00347.x
Gonzalez, B. E. et al. Pulmonary manifestations in children with invasive community-acquired Staphylococcus aureus infection. Clin. Infect. Dis. 41, 583–590 (2005).
pubmed: 16080077 doi: 10.1086/432475
Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).
pubmed: 9709046 doi: 10.1056/NEJM199808203390806
Mandell, G. L. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal-leukocyte interaction. J. Clin. Investig. 55, 561–566 (1975).
pubmed: 1117067 pmcid: 301784 doi: 10.1172/JCI107963
Fang, F. C., Frawley, E. R., Tapscott, T. & Vazquez-Torres, A. Discrimination and integration of stress signals by pathogenic bacteria. Cell Host Microbe 20, 144–153 (2016).
pubmed: 27512902 pmcid: 5111874 doi: 10.1016/j.chom.2016.07.010
Fang, F. C., Frawley, E. R., Tapscott, T. & Vazquez-Torres, A. Bacterial stress responses during host infection. Cell Host Microbe 20, 133–143 (2016).
pubmed: 27512901 pmcid: 4985009 doi: 10.1016/j.chom.2016.07.009
De Furio, M., Ahn, S. J., Burne, R. A. & Hagen, S. J. Oxidative stressors modify the response of Streptococcus mutans to Its Competence signal peptides. Appl. Environ. Microbiol. 83, https://doi.org/10.1128/AEM.01345-17 (2017).
Ibrahim, Y. M., Kerr, A. R., McCluskey, J. & Mitchell, T. J. Role of HtrA in the virulence and competence of Streptococcus pneumoniae. Infect. Immun. 72, 3584–3591 (2004).
pubmed: 15155668 pmcid: 415679 doi: 10.1128/IAI.72.6.3584-3591.2004
Turgay, K., Hamoen, L. W., Venema, G. & Dubnau, D. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev. 11, 119–128 (1997).
pubmed: 9000055 doi: 10.1101/gad.11.1.119
Liu, J. & Zuber, P. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J. Bacteriol. 180, 4243–4251 (1998).
pubmed: 9696775 pmcid: 107423 doi: 10.1128/JB.180.16.4243-4251.1998
Goerke, C. et al. Role of Staphylococcus aureus global regulators sae and sigmaB in virulence gene expression during device-related infection. Infect. Immun. 73, 3415–3421 (2005).
pubmed: 15908369 pmcid: 1111833 doi: 10.1128/IAI.73.6.3415-3421.2005
Gertz, S. et al. Characterization of the sigma(B) regulon in Staphylococcus aureus. J. Bacteriol. 182, 6983–6991 (2000).
pubmed: 11092859 pmcid: 94824 doi: 10.1128/JB.182.24.6983-6991.2000
Kullik, I. I. & Giachino, P. The alternative sigma factor sigmaB in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch. Microbiol. 167, 151–159 (1997).
pubmed: 9042755 doi: 10.1007/s002030050428
Tao, L., Wu, X. & Sun, B. Alternative sigma factor sigmaH modulates prophage integration and excision in Staphylococcus aureus. PLoS Pathog. 6, e1000888 (2010).
pubmed: 20485515 pmcid: 2869324 doi: 10.1371/journal.ppat.1000888
Shaw, L. N. et al. Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS ONE 3, e3844 (2008).
pubmed: 19050758 pmcid: 2585143 doi: 10.1371/journal.pone.0003844
Miller, H. K. et al. The extracytoplasmic function sigma factor sigmaS protects against both intracellular and extracytoplasmic stresses in Staphylococcus aureus. J. Bacteriol. 194, 4342–4354 (2012).
pubmed: 22685284 pmcid: 3416259 doi: 10.1128/JB.00484-12
Jenul, C. & Horswill, A. R. Regulation of Staphylococcus aureus virulence. Microbiol. Spectr. 6, https://doi.org/10.1128/microbiolspec.GPP3-0031-2018 (2018).
Sun, F. et al. Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc. Natl Acad. Sci. USA 109, 9095–9100 (2012).
pubmed: 22586129 pmcid: 3384213 doi: 10.1073/pnas.1200603109
Tiwari, N. et al. The SrrAB two-component system regulates Staphylococcus aureus pathogenicity through redox sensitive cysteines. Proc. Natl Acad. Sci. USA 117, 10989–10999 (2020).
pubmed: 32354997 pmcid: 7245129 doi: 10.1073/pnas.1921307117
Geiger, T., Goerke, C., Mainiero, M., Kraus, D. & Wolz, C. The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals. J. Bacteriol. 190, 3419–3428 (2008).
pubmed: 18344360 pmcid: 2395011 doi: 10.1128/JB.01927-07
Mashruwala, A. A., Gries, C. M., Scherr, T. D., Kielian, T. & Boyd, J. M. SaeRS is responsive to cellular respiratory status and regulates fermentative biofilm formation in Staphylococcus aureus. Infect. Immun. 85, https://doi.org/10.1128/IAI.00157-17 (2017).
Mashruwala, A. A., Guchte, A. V. & Boyd, J. M. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. Elife 6, https://doi.org/10.7554/eLife.23845 (2017).
Chen, I., Provvedi, R. & Dubnau, D. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J. Biol. Chem. 281, 21720–21727 (2006).
pubmed: 16751195 doi: 10.1074/jbc.M604071200
Garcia-Betancur, J. C. et al. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. Elife 6, https://doi.org/10.7554/eLife.28023 (2017).
Thomas, V. C. et al. A central role for carbon-overflow pathways in the modulation of bacterial cell death. PLoS Pathog. 10, e1004205 (2014).
pubmed: 24945831 pmcid: 4063974 doi: 10.1371/journal.ppat.1004205
Sadykov, M. R. et al. Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus. J. Bacteriol. 195, 3035–3044 (2013).
pubmed: 23625849 pmcid: 3697545 doi: 10.1128/JB.00042-13
Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol. 53, 217–244 (1999).
pubmed: 10547691 doi: 10.1146/annurev.micro.53.1.217
Redfield, R. J. Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 119, 213–221 (1988).
pubmed: 3396864 pmcid: 1203342 doi: 10.1093/genetics/119.1.213
van Sinderen, D. & Venema, G. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol. 176, 5762–5770 (1994).
pubmed: 8083168 pmcid: 196780 doi: 10.1128/jb.176.18.5762-5770.1994
Machado, H. et al. Strain-specific metabolic requirements revealed by a defined minimal medium for systems analyses of Staphylococcus aureus. Appl. Environ. Microbiol. 85, https://doi.org/10.1128/AEM.01773-19 (2019).
Gaupp, R., Ledala, N. & Somerville, G. A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. 2, 33 (2012).
pubmed: 22919625 pmcid: 3417528 doi: 10.3389/fcimb.2012.00033
Painter, K. L., Hall, A., Ha, K. P. & Edwards, A. M. The electron transport chain sensitizes Staphylococcus aureus and Enterococcus faecalis to the oxidative burst. Infect. Immun. 85, https://doi.org/10.1128/IAI.00659-17 (2017).
Karavolos, M. H., Horsburgh, M. J., Ingham, E. & Foster, S. J. Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149, 2749–2758 (2003).
pubmed: 14523108 doi: 10.1099/mic.0.26353-0
Imlay, J. A., Chin, S. M. & Linn, S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640–642 (1988).
pubmed: 2834821 doi: 10.1126/science.2834821
Borek, E. & Ryan, A. The transfer of irradiation-elicited induction in a lysogenic organism. Proc. Natl Acad. Sci. USA 44, 374–377 (1958).
pubmed: 16590209 pmcid: 335433 doi: 10.1073/pnas.44.5.374
Gagne, A. L. et al. Competence in Streptococcus pneumoniae is a response to an increasing mutational burden. PLoS ONE 8, e72613 (2013).
pubmed: 23967325 pmcid: 3742669 doi: 10.1371/journal.pone.0072613
Nicholson, W. L. & Maughan, H. The spectrum of spontaneous rifampin resistance mutations in the rpoB gene of Bacillus subtilis 168 spores differs from that of vegetative cells and resembles that of Mycobacterium tuberculosis. J. Bacteriol. 184, 4936–4940 (2002).
pubmed: 12169622 pmcid: 135274 doi: 10.1128/JB.184.17.4936-4940.2002
Arango Duque, G. & Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5, 491 (2014).
pubmed: 25339958 pmcid: 4188125 doi: 10.3389/fimmu.2014.00491
Wang, J., Roderiquez, G. & Norcross, M. A. Control of adaptive immune responses by Staphylococcus aureus through IL-10, PD-L1, and TLR2. Sci. Rep. 2, 606 (2012).
pubmed: 22930672 pmcid: 3428601 doi: 10.1038/srep00606
Peres, A. G. et al. Uncoupling of pro- and anti-inflammatory properties of Staphylococcus aureus. Infect. Immun. 83, 1587–1597 (2015).
pubmed: 25644014 pmcid: 4363428 doi: 10.1128/IAI.02832-14
Koch, G., Nadal-Jimenez, P., Cool, R. H. & Quax, W. J. Assessing Pseudomonas virulence with nonmammalian host: Galleria mellonella. Methods Mol. Biol. 1149, 681–688 (2014).
pubmed: 24818942 doi: 10.1007/978-1-4939-0473-0_52
Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007).
pubmed: 17940231 doi: 10.1001/jama.298.15.1763
Richardson, A. R., Dunman, P. M. & Fang, F. C. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol. Microbiol. 61, 927–939 (2006).
pubmed: 16859493 doi: 10.1111/j.1365-2958.2006.05290.x
Rice, K. C., Nelson, J. B., Patton, T. G., Yang, S. J. & Bayles, K. W. Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. J. Bacteriol. 187, 813–821 (2005).
pubmed: 15659658 pmcid: 545714 doi: 10.1128/JB.187.3.813-821.2005
Morikawa, K. et al. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog. 8, e1003003 (2012).
pubmed: 23133387 pmcid: 3486894 doi: 10.1371/journal.ppat.1003003
Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J. Bacteriol. 195, 4085–4093 (2013).
pubmed: 23836866 pmcid: 3754741 doi: 10.1128/JB.00696-13
Escoll, P. & Buchrieser, C. Metabolic reprogramming of host cells upon bacterial infection: Why shift to a Warburg-like metabolism? FEBS J. 285, 2146–2160 (2018).
pubmed: 29603622 doi: 10.1111/febs.14446
Ramos-Ibeas, P., Barandalla, M., Colleoni, S. & Lazzari, G. Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Mol. Cell. Biochem. 429, 137–150 (2017).
pubmed: 28247212 doi: 10.1007/s11010-017-2942-z
Feil, E. J. et al. How clonal is Staphylococcus aureus? J. Bacteriol. 185, 3307–3316 (2003).
pubmed: 12754228 pmcid: 155367 doi: 10.1128/JB.185.11.3307-3316.2003
Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).
pubmed: 20093474 pmcid: 2821690 doi: 10.1126/science.1182395
Fitzgerald, J. R. & Holden, M. T. Genomics of natural populations of Staphylococcus aureus. Annu. Rev. Microbiol. 70, 459–478 (2016).
pubmed: 27482738 doi: 10.1146/annurev-micro-102215-095547
Rosenthal, A. Z. et al. Metabolic interactions between dynamic bacterial subpopulations. Elife 7, https://doi.org/10.7554/eLife.33099 (2018).
Duthie, E. S. Variation in the antigenic composition of Staphylococcal coagulase. J. Gen. Microbiol. 7, 320–326 (1952).
pubmed: 13022917 doi: 10.1099/00221287-7-3-4-320
Yepes, A., Koch, G., Waldvogel, A., Garcia-Betancur, J. C. & Lopez, D. Reconstruction of mreB expression in Staphylococcus aureus via a collection of new integrative plasmids. Appl. Environ. Microbiol. 80, 3868–3878 (2014).
pubmed: 24747904 pmcid: 4054220 doi: 10.1128/AEM.00759-14
Rudin, L., Sjostrom, J. E., Lindberg, M. & Philipson, L. Factors affecting competence for transformation in Staphylococcus aureus. J. Bacteriol. 118, 155–164 (1974).
pubmed: 4274456 pmcid: 246652 doi: 10.1128/jb.118.1.155-164.1974
Arnaud, M., Chastanet, A. & Debarbouille, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 70, 6887–6891 (2004).
pubmed: 15528558 pmcid: 525206 doi: 10.1128/AEM.70.11.6887-6891.2004
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001).
doi: 10.1006/meth.2001.1262
Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl Acad. Sci. USA 95, 5752–5756 (1998).
pubmed: 9576956 pmcid: 20451 doi: 10.1073/pnas.95.10.5752
Lindgren, J. K. In Staphylococcus Epidermidis. Methods in Molecular Biology, Vol. 1106 (ed. Fey, P.) (Humana Press, 2014).
Lojek, L. J., Farrand, A. J., Weiss, A. & Skaar, E. P. Fur regulation of Staphylococcus aureus heme oxygenases is required for heme homeostasis. Int. J. Med. Microbiol. 308, 582–589 (2018).
pubmed: 29409696 pmcid: 6070430 doi: 10.1016/j.ijmm.2018.01.009

Auteurs

Mar Cordero (M)

National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain.

Julia García-Fernández (J)

National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain.

Ivan C Acosta (IC)

National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain.

Ana Yepes (A)

Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany.
Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany.

Jose Avendano-Ortiz (J)

The Innate Immune Response and Tumor Immunology Group, IdiPaz La Paz University Hospital, 28046, Madrid, Spain.

Clivia Lisowski (C)

Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany.

Babett Oesterreicht (B)

Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany.
Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany.

Knut Ohlsen (K)

Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany.
Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany.

Eduardo Lopez-Collazo (E)

The Innate Immune Response and Tumor Immunology Group, IdiPaz La Paz University Hospital, 28046, Madrid, Spain.
CIBER of Respiratory Diseases (CIBERES), Madrid, Spain.

Konrad U Förstner (KU)

Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany.
Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany.
Information Centre for Life Science (ZBMED), 50931, Cologne, Germany.
TH Köln - University of Applied Sciences, 50578, Cologne, Germany.

Ana Eulalio (A)

Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany.
Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal.
Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.

Daniel Lopez (D)

National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain. dlopez@cnb.csic.es.
Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany. dlopez@cnb.csic.es.
Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany. dlopez@cnb.csic.es.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH