PEGylated Lecithin-Chitosan Nanoparticle-Encapsulated Alphα-Terpineol for In Vitro Anticancer Effects.
PEGylated lecithin-chitosan nanoparticles
alphα-Terpineol
angiogenesis
antibacterial
apoptosis
cytotoxicity
Journal
AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111
Informations de publication
Date de publication:
21 Mar 2022
21 Mar 2022
Historique:
received:
30
11
2021
accepted:
28
02
2022
entrez:
22
3
2022
pubmed:
23
3
2022
medline:
24
3
2022
Statut:
epublish
Résumé
The aim of this study was to fabrication PEGylated lecithin-chitosan nanoparticles (PLC-NPs) as alphα-Terpineol's (αT-PLC-NPs) delivery system and examine its anti-cancer effects. αT-PLC-NPs were synthesized by self-assembling method; after characterization, entrapment efficiency of α-T was measured by HPLC procedure. MTT test was conducted for cytotoxicity evaluation. Chick chorioallantoic membrane (CAM) and quantitative polymerase chain reaction (qPCR) analysis were used to determine the angiogenesis properties, and qPCR, flow cytometry, and acridine orange and propidium iodide (AO/PI) staining were used to evaluate the pro-apoptotic effects of αT-PLC-NPs. Finally, the anti-inflammatory and antibacterial activity of the αT-PLC-NPs was also evaluated. αT-PLC-NPs with a size of 220.8 nm, polydispersity index (PDI) of 0.3, zeta potential of +29.03 mV, and encapsulation efficiency of 82% showed higher inhibitory effect on MCF7 cells (IC
Identifiants
pubmed: 35314914
doi: 10.1208/s12249-022-02245-5
pii: 10.1208/s12249-022-02245-5
doi:
Substances chimiques
Lecithins
0
Polyethylene Glycols
3WJQ0SDW1A
Chitosan
9012-76-4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
94Informations de copyright
© 2022. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.
Références
Abbasi N, Homayouni Tabrizi M, Ardalan T, Roumi S. Cerium oxide nanoparticles-loaded on chitosan for the investigation of anticancer properties. Materials Technology. 2021:1–11.
Dai X, Xiang L, Li T, Bai Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. Journal of Cancer. 2016;7(10):1281–94.
pubmed: 27390604
pmcid: 4934037
doi: 10.7150/jca.13141
Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, Joshi PA, Wakeham A, Molyneux SD, Martin B, Bouwman P, Cescon DW, Elia AJ, Winterton-Perks Z, Cruickshank J, Brenner D, Tseng A, Musgrave M, Berman HK, et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. Journal of Experimental Medicine. 2013;210(8):1529–44.
doi: 10.1084/jem.20121337
Asadi-Samani M, Farkhad NK, Mahmoudian-Sani MR, Shirzad H. Antioxidants as a double-edged sword in the treatment of cancer. IntechOpen: Antioxidants; 2019.
doi: 10.5772/intechopen.85468
Soltani M, Etminan A, Rahmati A, Behjati Moghadam M, Ghaderi Segonbad G, Homayouni TM. Incorporation of Boswellia sacra essential oil into chitosan/TPP nanoparticles towards improved therapeutic efficiency. Materials Technology. 2021:1–13.
Van Loenhout J, Peeters M, Bogaerts A, Smits E, Deben C. Oxidative stress-inducing anticancer therapies: taking a closer look at their immunomodulating effects. Antioxidants. 2020;9(12):1188.
pmcid: 7759788
doi: 10.3390/antiox9121188
Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798–811.
pubmed: 16892092
doi: 10.1038/sj.onc.1209608
Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. Journal of Clinical Medicine. 2020;9(1):84.
doi: 10.3390/jcm9010084
Shabestarian H, Homayouni Tabrizi M, Movahedi M, Neamati A, Sharifnia F. Putative mechanism for cancer suppression by PLGA nanoparticles loaded with Peganum harmala smoke extract. Journal of Microencapsulation. 2021;38(5):324–37.
pubmed: 33951988
doi: 10.1080/02652048.2021.1917715
Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response. 2020;18(3):1559325820936161.
pubmed: 32699536
pmcid: 7357073
Moon JH, Moxley JW Jr, Zhang P, Cui H. Nanoparticle approaches to combating drug resistance. Future Medicinal Chemistry. 2015;7(12):1503–10.
pubmed: 26334205
doi: 10.4155/fmc.15.82
Hassan SB, Gali-Muhtasib H, Göransson H, Larsson R. Alpha terpineol: a potential anticancer agent which acts through suppressing NF-κB signalling. Anticancer Research. 2010;30(6):1911–9.
pubmed: 20651334
Held S, Schieberle P, Somoza V. Characterization of α-terpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. Journal of Agricultural and Food Chemistry. 2007;55(20):8040–6.
pubmed: 17867636
doi: 10.1021/jf071691m
Bicas J, Neri-Numa I, Ruiz A, De Carvalho J, Pastore G. Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food and Chemical Toxicology. 2011;49(7):1610–5.
pubmed: 21540069
doi: 10.1016/j.fct.2011.04.012
Li L, Shi C, Yin Z, Jia R, Peng L, Kang S, Li Z. Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Brazilian Journal of Microbiology. 2014;45(4):1409–13.
pubmed: 25763048
doi: 10.1590/S1517-83822014000400035
Kong Q, Zhang L, An P, Qi J, Yu X, Lu J, Ren X. Antifungal mechanisms of α-terpineol and terpene-4-alcohol as the critical components of Melaleuca alternifolia oil in the inhibition of rot disease caused by Aspergillus ochraceus in postharvest grapes. Journal of applied microbiology. 2019;126(4):1161–74.
pubmed: 30614164
doi: 10.1111/jam.14193
ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine. 2017;12:7291.
doi: 10.2147/IJN.S146315
Dong W, Ye J, Wang W, Yang Y, Wang H, Sun T, Gao L, Liu Y. Self-assembled lecithin/chitosan nanoparticles based on phospholipid complex: a feasible strategy to improve entrapment efficiency and transdermal delivery of poorly lipophilic drug. International Journal of Nanomedicine. 2020;15:5629–43.
pubmed: 32801706
pmcid: 7415465
doi: 10.2147/IJN.S261162
van Hoogevest P. Review–an update on the use of oral phospholipid excipients. European Journal of Pharmaceutical Sciences. 2017;108:1–12.
pubmed: 28711714
doi: 10.1016/j.ejps.2017.07.008
Drescher S, van Hoogevest P. The phospholipid research center: current research in phospholipids and their use in drug delivery. Pharmaceutics. 2020;12(12):1235.
pmcid: 7766331
doi: 10.3390/pharmaceutics12121235
Khan MM, Madni A, Torchilin V, Filipczak N, Pan J, Tahir N, Shah H. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Delivery. 2019;26(1):765–72.
pubmed: 31357896
pmcid: 6711028
doi: 10.1080/10717544.2019.1642420
Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics. 2021;13(10):1686.
pubmed: 34683979
pmcid: 8540112
doi: 10.3390/pharmaceutics13101686
Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. International Journal of Biological Macromolecules. 2015;72:1313–22.
pubmed: 25450550
doi: 10.1016/j.ijbiomac.2014.10.052
Özcan İ, Azizoğlu E, Şenyiğit T, Özyazıcı M, Özer Ö. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations. International Journal of Nanomedicine. 2013;8:461.
pubmed: 23390364
pmcid: 3564463
doi: 10.2147/IJN.S40519
Ma Q, Gao Y, Sun W, Cao J, Liang Y, Han S, Wang X, Sun Y. Self-assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Delivery. 2020;27(1):200–15.
pubmed: 31983258
pmcid: 7034086
doi: 10.1080/10717544.2020.1716878
Ramasamy T, Tran TH, Cho HJ, Kim JH, Kim YI, Jeon JY, Choi HG, Yong CS, Kim JO. Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharmaceutical Research. 2014;31(5):1302–14.
pubmed: 24297070
doi: 10.1007/s11095-013-1251-9
Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discovery Today. 2005;10(21):1451–8.
pubmed: 16243265
doi: 10.1016/S1359-6446(05)03575-0
Kouchakzadeh H, Shojaosadati SA, Maghsoudi A, Farahani EV. Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology. Aaps Pharmscitech. 2010;11(3):1206–11.
pubmed: 20680708
pmcid: 2974113
doi: 10.1208/s12249-010-9487-8
Marques SS, Ramos II, Fernandes SR, Barreiros L, Lima SA, Reis S, et al. Insights on ultrafiltration-based separation for the purification and quantification of methotrexate in nanocarriers. Molecules. 2020;25(8):1879.
pmcid: 7221554
doi: 10.3390/molecules25081879
Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers. 2013;95(1):50–6.
pubmed: 23618238
doi: 10.1016/j.carbpol.2013.02.031
Valencia MS, da Silva Júnior MF, Xavier-Júnior FH, de Oliveira VB, de Albuquerque PBS, de Oliveira Borba EF, et al. Characterization of curcumin-loaded lecithin-chitosan bioactive nanoparticles. Carbohydrate Polymer Technologies and Applications. 2021;2:100119.
doi: 10.1016/j.carpta.2021.100119
Pumiputavon K, Chaowasku T, Saenjum C, Osathanunkul M, Wungsintaweekul B, Chawansuntati K, Wipasa J, Lithanatudom P. Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. BMC Complementary and Alternative Medicine. 2017;17(1):1–11.
doi: 10.1186/s12906-017-1811-3
Mudunkotuwa IA, Al Minshid A, Grassian VH. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media. Analyst. 2014;139(5):870–81.
pubmed: 24350328
doi: 10.1039/C3AN01684F
Guo Q, Ai L, Cui SW. Fourier transform infrared spectroscopy (FTIR) for carbohydrate analysis. In: Methodology for Structural Analysis of Polysaccharides: Springer; 2018. p. 69–71.
doi: 10.1007/978-3-319-96370-9_9
Perez-Ruiz AG, Ganem A, Olivares-Corichi IM, García-Sánchez JR. Lecithin–chitosan–TPGS nanoparticles as nanocarriers of (−)-epicatechin enhanced its anticancer activity in breast cancer cells. RSC Advances. 2018;8(61):34773–82.
doi: 10.1039/C8RA06327C
Vrandečić NS, Erceg M, Jakić M, Klarić I. Kinetic analysis of thermal degradation of poly (ethylene glycol) and poly (ethylene oxide) s of different molecular weight. Thermochimica Acta. 2010;498(1-2):71–80.
doi: 10.1016/j.tca.2009.10.005
Mahmood S, Kiong KC, Tham CS, Chien TC, Hilles AR, Venugopal JR. PEGylated lipid polymeric nanoparticle–encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. AAPS PharmSciTech. 2020;21(7):1–15.
doi: 10.1208/s12249-020-01810-0
Bose SK, Nirbhavane P, Batra M, Chhibber S, Harjai K. Nanolipoidal α-terpineol modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa. Nanomedicine. 2020;15(18):1743–60.
pubmed: 32722996
doi: 10.2217/nnm-2020-0134
Altmeyer C, Karam TK, Khalil NM, Mainardes RM. Tamoxifen-loaded poly (L-lactide) nanoparticles: development, characterization and in vitro evaluation of cytotoxicity. Materials Science and Engineering: C. 2016;60:135–42.
doi: 10.1016/j.msec.2015.11.019
Alves ACS, Mainardes RM, Khalil NM. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Materials Science and Engineering: C. 2016;60:126–34.
doi: 10.1016/j.msec.2015.11.014
Martins LG, Mainardes RM. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly (lactic acid) nanoparticles. Journal of Pharmaceutical Analysis. 2017;7(6):388–93.
pubmed: 29404064
pmcid: 5790749
doi: 10.1016/j.jpha.2017.05.007
Jiang L, Sheikh MS, Huang Y. Decision making by p53: life versus death. Molecular and Cellular Pharmacology. 2010;2(2):69–77.
pubmed: 20514355
pmcid: 2877278
Sharma MR, Tuszynski GP, Sharma MC. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. Journal of Cellular Biochemistry. 2004;91(2):398–409.
pubmed: 14743398
doi: 10.1002/jcb.10762
Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer and Metastasis Reviews. 1995;14(1):3–15.
pubmed: 7606818
doi: 10.1007/BF00690207
Tyavambiza C, Elbagory AM, Madiehe AM, Meyer M, Meyer S. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract. Nanomaterials. 2021;11(5):1343.
pubmed: 34065254
pmcid: 8160699
doi: 10.3390/nano11051343
Ilk S, Saglam N, Özgen M. Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent. Artificial Cells, Nanomedicine, and Biotechnology. 2017;45(5):907–16.
pubmed: 27265551
doi: 10.1080/21691401.2016.1192040
Liu L, Zhou C, Xia X, Liu Y. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. International Journal of Nanomedicine. 2016;11:761.
pubmed: 26966360
pmcid: 4771412
doi: 10.2147/IJN.S96146
Naskar S, Kuotsu K, Sharma S. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. Journal of Drug Targeting. 2019;27(4):379–93.
pubmed: 30103626
doi: 10.1080/1061186X.2018.1512112
Maiti R, Panigrahi S, Yin T, Huo M. Bovine serum albumin nanoparticles constructing procedures on anticancer activities. Int J Adv Res Biol Sci. 2018;5(4):226–39.
Şenyiğit T, Sonvico F, Barbieri S, Özer Ö, Santi P, Colombo P. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. Journal of Controlled Release. 2010;142(3):368–73.
pubmed: 19932722
doi: 10.1016/j.jconrel.2009.11.013
Mariyam M, Ghosal K, Thomas S, Kalarikkal N, Latha MS. Dendrimers: general aspects, applications and structural exploitations as prodrug/drug-delivery vehicles in current medicine. Mini Reviews in Medicinal Chemistry. 2018;18(5):439–57.
pubmed: 28618985
doi: 10.2174/1389557517666170512095151
Barbieri S, Sonvico F, Como C, Colombo G, Zani F, Buttini F, Bettini R, Rossi A, Colombo P. Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: loading, enzyme-trigger release and cell uptake. Journal of Controlled Release. 2013;167(3):276–83.
pubmed: 23428841
doi: 10.1016/j.jconrel.2013.02.009
Hafner A, Dürrigl M, Pepić I, Filipović-Grčić J. Short-and long-term stability of lyophilised melatonin-loaded lecithin/chitosan nanoparticles. Chemical and Pharmaceutical Bulletin. 2011;59(9):1117–23.
pubmed: 21881255
doi: 10.1248/cpb.59.1117
Moreno E, Schwartz J, Larrea E, Conde I, Font M, Sanmartín C, Irache JM, Espuelas S. Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(8):2003–12.
doi: 10.1016/j.nano.2015.07.011
Pereira MC, Oliveira DA, Hill LE, Zambiazi RC, Borges CD, Vizzotto M, Mertens-Talcott S, Talcott S, Gomes CL. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chemistry. 2018;240:396–404.
pubmed: 28946289
doi: 10.1016/j.foodchem.2017.07.144
Zengin H, Baysal AH. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules. 2014;19(11):17773–98.
pubmed: 25372394
pmcid: 6272013
doi: 10.3390/molecules191117773
Souza MP, Vaz AF, Correia MT, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food and Bioprocess Technology. 2014;7(4):1149–59.
doi: 10.1007/s11947-013-1160-2
Alhajamee M, Marai K, Al Abbas SMN, Homayouni TM. Co-encapsulation of curcumin and tamoxifen in lipid-chitosan hybrid nanoparticles for cancer therapy. Materials Technology. 2021:1–12.
Brunetti J, Carnicelli V, Ponzi A, Di Giulio A, Lizzi AR, Cristiano L, et al. Antibacterial and anti-inflammatory activity of an antimicrobial peptide synthesized with D amino acids. Antibiotics. 2020;9(12):840.
pmcid: 7760307
doi: 10.3390/antibiotics9120840
Pandya S. Nanoemulsion and their antimicrobial activity. Researchgate publications. 2015. https://doi.org/10.13140/RG.2.1.2274.6961 .
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18.
pubmed: 29467962
doi: 10.18632/oncotarget.23208
Khaleel C, Tabanca N, Buchbauer G. α-Terpineol, a natural monoterpene: a review of its biological properties. Open Chemistry. 2018;16(1):349–61.
doi: 10.1515/chem-2018-0040
Itani WS, El-Banna SH, Hassan SB, Larsson RL, Bazarbachi A, Gali-Muhtasib HU. Anti colon cancer components from lebanese sage (Salvia libanotica) essential oil: mechanistic basis. Cancer Biology & Therapy. 2008;7(11):1765–73.
doi: 10.4161/cbt.7.11.6740
Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedings of the National Academy of Sciences. 1998;95(8):4607–12.
doi: 10.1073/pnas.95.8.4607
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation. 2001;41:189–207.
pubmed: 11384745
doi: 10.1016/S0065-2571(00)00013-3
Ahmed NH, Said UZ, Meky NH, Mohamed MA. Role of chitosan nanoparticles as anti-angiogenic in mice bearing Ehrlich carcinoma. Oncol Res Rev. 2018;1:1–6.
doi: 10.15761/ORR.1000117
Dragostin O-M, Tatia R, Samal SK, Oancea A, Zamfir AS, Dragostin I, Lisă EL, Apetrei C, Zamfir CL. Designing of chitosan derivatives nanoparticles with antiangiogenic effect for cancer therapy. Nanomaterials. 2020;10(4):698.
pmcid: 7221956
doi: 10.3390/nano10040698
Zhang L, Hu Y. Alphastatin-loaded chitosan nanoparticle preparation and its antiangiogenic effect on lung carcinoma. International Journal of Polymer Science. 2019;2019:1–9.