ADAMTS2 and ADAMTS14 can substitute for ADAMTS3 in adults for pro-VEGFC activation and lymphatic homeostasis.
Angiogenesis
Cardiovascular disease
Growth factors
Vascular Biology
Journal
JCI insight
ISSN: 2379-3708
Titre abrégé: JCI Insight
Pays: United States
ID NLM: 101676073
Informations de publication
Date de publication:
22 04 2022
22 04 2022
Historique:
received:
19
05
2021
accepted:
16
03
2022
pubmed:
23
3
2022
medline:
26
4
2022
entrez:
22
3
2022
Statut:
epublish
Résumé
The capacity of ADAMTS3 to cleave pro-VEGFC into active VEGFC able to bind its receptors and to stimulate lymphangiogenesis has been clearly established during embryonic life. However, this function of ADAMTS3 is unlikely to persist in adulthood because of its restricted expression pattern after birth. Because ADAMTS2 and ADAMTS14 are closely related to ADAMTS3 and are mainly expressed in connective tissues where the lymphatic network extends, we hypothesized that they could substitute for ADAMTS3 during adulthood in mammals allowing proteolytic activation of pro-VEGFC. Here, we demonstrated that ADAMTS2 and ADAMTS14 are able to process pro-VEGFC into active VEGFC as efficiently as ADAMTS3. In vivo, adult mice lacking Adamts2 developed skin lymphedema due to a reduction of the density and diameter of lymphatic vessels, leading to a decrease of lymphatic functionality, while genetic ablation of Adamts14 had no impact. In a model of thermal cauterization of cornea, lymphangiogenesis was significantly reduced in Adamts2- and Adamts14-KO mice and further repressed in Adamts2/Adamts14 double-KO mice. In summary, we have demonstrated that ADAMTS2 and ADAMTS14 are as efficient as ADAMTS3 in activation of pro-VEGFC and are involved in the homeostasis of the lymphatic vasculature in adulthood, both in physiological and pathological processes.
Identifiants
pubmed: 35316211
pii: 151509
doi: 10.1172/jci.insight.151509
pmc: PMC9089798
doi:
pii:
Substances chimiques
ADAMTS Proteins
EC 3.4.24.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
EMBO J. 2019 Oct 1;38(19):e101688
pubmed: 31475747
Mol Cell Biol. 2005 Mar;25(6):2441-9
pubmed: 15743836
J Clin Invest. 2014 Mar;124(3):898-904
pubmed: 24590274
Lymphat Res Biol. 2008;6(3-4):191-201
pubmed: 19093792
FASEB J. 2016 May;30(5):1741-56
pubmed: 26740262
Semin Cell Dev Biol. 2015 Feb;38:117-30
pubmed: 25460541
Science. 1997 May 30;276(5317):1423-5
pubmed: 9162011
Nat Commun. 2020 Jun 1;11(1):2724
pubmed: 32483144
J Biol Chem. 2005 Oct 14;280(41):34397-408
pubmed: 16046392
Cornea. 2006 May;25(4):443-7
pubmed: 16670483
Nat Med. 2011 Nov 07;17(11):1371-80
pubmed: 22064427
Biochem J. 2001 Apr 15;355(Pt 2):271-8
pubmed: 11284712
J Biol Chem. 2002 Feb 22;277(8):5756-66
pubmed: 11741898
Invest Ophthalmol Vis Sci. 2013 May 03;54(5):3082-93
pubmed: 23580490
Front Mol Biosci. 2021 Mar 19;8:643178
pubmed: 33816558
Front Immunol. 2019 Feb 26;10:308
pubmed: 30863410
Angiogenesis. 2016 Jan;19(1):53-65
pubmed: 26446156
Matrix Biol. 2018 Sep;70:140-157
pubmed: 29649548
Hum Mol Genet. 2017 Nov 1;26(21):4095-4104
pubmed: 28985353
Am J Med Genet A. 2018 Dec;176(12):2858-2861
pubmed: 30450763
Exp Eye Res. 2009 Aug;89(2):274-6
pubmed: 19285069
Blood. 2012 May 24;119(21):5048-56
pubmed: 22490679
Nat Genet. 2009 Dec;41(12):1272-4
pubmed: 19935664
J Proteome Res. 2019 Jun 7;18(6):2501-2513
pubmed: 31046285
Biology (Basel). 2021 Feb 23;10(2):
pubmed: 33672235
BMC Cell Biol. 2011 Jun 24;12:29
pubmed: 21702933
Circulation. 2014 May 13;129(19):1962-71
pubmed: 24552833
Science. 2020 Jul 10;369(6500):
pubmed: 32646971
Development. 2006 Apr;133(8):1587-96
pubmed: 16556917
Int J Exp Pathol. 2020 Feb;101(1-2):4-20
pubmed: 32219922
Matrix Biol. 2015 May-Jul;44-46:46-53
pubmed: 25863161