Polyethylene-Derived Activated Carbon Materials for Commercially Available Supercapacitor in an Organic Electrolyte System.

activated carbon chemical activation mechanisms polyethylene sulfonation supercapacitors

Journal

Macromolecular rapid communications
ISSN: 1521-3927
Titre abrégé: Macromol Rapid Commun
Pays: Germany
ID NLM: 9888239

Informations de publication

Date de publication:
May 2022
Historique:
revised: 04 03 2022
received: 04 01 2022
pubmed: 23 3 2022
medline: 23 3 2022
entrez: 22 3 2022
Statut: ppublish

Résumé

High-performance supercapacitors based on activated carbons (AC) derived from polyethylene (PE), which is one of the most abundant plastic materials worldwide, are fabricated. First, PE carbons (PEC) are prepared via sulfonation, which is a reported solution for successful carbonization of innately non-carbonizable PE. Then, the physico-electrical changes of PECs upon a chemical activation process are explored. Interestingly, upon the chemical activation, PECs are converted ACs with a large surface area and high crystallinity at the same time. Subsequently, PE-derived ACs (PEAC) are exploited as electrode materials for supercapacitors. Resultant supercapacitors based on PEACs exhibit impressive performance. When compared to supercapacitors based on YP50f, representative commercial ACs, devices using PEACs presented considerably good capacitance, low resistance, and great rate capability. Specifically, the retention rate of devices using PEACs is significantly higher than that of YP50f-based devices. At the high rate of charge-discharge situation reaching 7 A g

Identifiants

pubmed: 35316561
doi: 10.1002/marc.202200006
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200006

Subventions

Organisme : National Research Foundation of Korea(NRF)
Organisme : Korea government (MSIT)
ID : 2021R1F1A104627211
Organisme : Korea government (MSIT)
ID : 2020R1A4A4079931

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Application, Wiley, Hoboken, NJ, USA 2008.
S. M. Belad-Mousavi, B. Khezri, S. Matějková, Z. Sofer, M. Pumera, Angew. Chem. Int. Ed. 2019, 58, 13340.
S. I. Wong, H. Lin, J. Sunarso, B. T. Wong, B. Jia, Appl. Mater. Today 2020, 18, 100522.
E. Frackowiak, Q. Abbas, F. Béguin, J. Energy Chem. 2013, 22, 226.
X. Liu, G. A. Elia, B. Qin, H. Zhang, P. Ruschhaupt, S. Fang, A. Varzi, S. Passerini, ACS Energy Lett. 2019, 4, 2675.
A. Sajedi-Moghaddam, C. C. Mayorga-Martinez, E. Saievar-Iranizad, Z. Sofer, M. Pumera, Appl. Mater. Today 2019, 16, 280.
P. Ratajczak, M. E. Suss, F. Kaasik, F. Béguin, Energy Storage Mater. 2019, 16, 126.
J. Choi, I. Yang, S.-S. Kim, S. Y. Cho, S. Lee, Macromol. Rapid Commun. 2022, 43, 2100467.
I. Yang, D. Kwon, M.-S. Kim, J. C. Jung, Carbon 2018, 132, 503.
J.-A. Kim, I.-S. Park, J.-H. Seo, J.-J. Lee, Trans. Electr. Electron. Mater. 2014, 15, 81.
F. Xu, Y. Qiu, G. Jiang, B. Ding, J. Li, Q. Liu, J. Wu, X. Xu, H. Wang, Y. Liang, Macromol. Rapid Commun. 2019, 40, 1800770.
I. Yang, S.-G. Kim, S. H. Kwon, M.-S. Kim, J. C. Jung, Electrochim. Acta 2017, 223, 21.
C. Lai, S. Wang, L. Cheng, Y. Wang, L.i Fu, Y. Sun, B. Lin, Electrochim. Acta 2021, 365, 137334.
J. Niu, J. Li, P. Liu, Appl. Mater. Today 2020, 20, 100733.
V. C. Hoang, M. Hassan, V. G. Gomes, Appl. Mater. Today 2018, 12, 342.
J. Ye, B. Hu, Y. Jin, Z. Wang, Y. Xi, L. Fang, Q. Pan, Electrochim. Acta 2020, 349, 136372.
S. Lin, J. Tang, K. Zhang, T. S. Suzuki, Q. Wei, M. Mukaida, Y. Zhang, H. Mamiya, X. Yu, L.-C. Qin, J. Power Sources 2020, 482, 228995.
P. Zaccagnini, D. di Giovanni, M. G. Gomez, S. Passerini, A. Varzi, A. Lamberti, Electrochim. Acta 2020, 357, 136838.
J. Kang, M. Hwang, K.-d. Seong, L. Lyu, D. Ko, Y. Piao, Electrochim. Acta 2020, 346, 136258.
S. Siyahjani, S. Oner, H. Diker, B. Gultekin, C. Varlikli, J. Power Sources 2020, 467, 228353.
E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Appl. Phys. Lett. 2000, 77, 2421.
H. Pan, J. Li, Y. Feng, Nanoscale Res. Lett. 2010, 5, 654.
J. F. Kwiatkowski, Chemical Engineering Methods and Technology, Activated Carbon: Classifications, Properties and Application, Nova Science, New York, USA 2012.
D. D. L. Chung, Carbon Materials, Science and Applications, World Scientific, Danvers, MA, USA 2019.
D.-W. Kim, H.-S. Kil, K. Nakabayashi, S.-H. Yoon, J. Miyawaki, Carbon 2017, 114, 98.
D.-W. Kim, H.-S. Kil, J. Kim, I. Mochida, K. Nakabayashi, C. K. Rhee, J. Miyawaki, S.-H. Yoon, Carbon 2017, 121, 301.
I. Yang, M. Jung, M.-S. Kim, D. Choi, J. C. Jung, J. Mater. Chem. A 2021, 9, 9815.
I. Yang, J. Yoo, J. Lee, M.-S. Kim, J. C. Jung, J. Electrochem. Soc. 2019, 166, A3950.
A. K. Jassim, Procedia Manuf. 2017, 8, 635.
D. Choi, J.-S. Yeo, H.-I. Joh, S. Lee, ACS Sustainable Chem. Eng. 2018, 6, 12463.
D. Choi, D. Jang, H.-I. Joh, E. Reichmanis, S. Lee, Chem. Mater. 2017, 29, 9518.
D. Choi, S. H. Yoo, S. Lee, Carbon 2019, 146, 9.
X. Liu, C. Ma, Y. Wen, X. Chen, X. Zhao, T. Tang, R. Holze, E. Mijowska, Carbon 2021, 171, 819.
J. Min, X. Wen, T. Tang, X. Chen, K. Huo, J. Gong, J. Azadmanjiri, C. He, E. Mijowska, Chem. Commun. 2020, 56, 9142.
J. Gong, X. Chen, T. Tang, Prog. Polym. Sci. 2019, 94, 1.
J. Gong, B. Michalkiewicz, X. Chen, E. Mijowska, J. Liu, Z. Jiang, X. Wen, T. Tang, ACS Sustainable Chem. Eng. 2014, 2, 2837.
A. C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095.
A. C. Ferrari, Solid State Commun. 2007, 143, 47.
F. Tuinstra, J. L. Koenig, J. Chem. Phys. 1970, 53, 1126.
B. E. Barton, J. Patton, E. Hukkanen, M. Behr, J.-C. Lin, S. Beyer, Y. Zhang, L. Brehm, B. Haskins, B. Bell, B. Gerhart, A. Leugers, M. Bernius, Carbon 2015, 94, 465.
D. Qu, H. Shi, J. Power Sources 1998, 74, 99.
H. D. Yoo, J. H. Jang, J. H. Ryu, Y. Park, S. M. Oh, J. Power Sources 2014, 267, 411.
C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Electrochim. Acta 2013, 92, 183.
C. Portet, P. L. Taberna, P. Simon, C. Laberty-Robert, Electrochim. Acta 2004, 49, 905.
X. F. Sánchez-Romate, A. D. Bosque, J. Artigas-Arnaudas, B. K. Muñoz, M. Sánchez, A. Ureña, Electrochim. Acta 2021, 370, 137746.
E. Quattrocchi, T. H. Wan, A. Curcio, S. Pepe, M. B. Effat, F. Ciucci, Electrochim. Acta 2019, 324, 134853.
M. A. Hughes, J. A. Allen, S. W. Donne, Electrochim. Acta 2020, 338, 135847.
S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309.

Auteurs

Inchan Yang (I)

Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea.

Ji Hye Mok (JH)

Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea.

Meenkyoung Jung (M)

Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea.

Jihoon Yoo (J)

Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea.

Myung-Soo Kim (MS)

Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea.

Dalsu Choi (D)

Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea.

Ji Chul Jung (JC)

Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea.

Classifications MeSH