Design and simulation of a millifluidic device for differential detection of SARS-CoV-2 and H1N1 based on triboelectricity.

Antibody-antigen interaction Electric double layer (EDL) Respiratory diseases Triboelectric effect Virus detection

Journal

Bioelectrochemistry (Amsterdam, Netherlands)
ISSN: 1878-562X
Titre abrégé: Bioelectrochemistry
Pays: Netherlands
ID NLM: 100953583

Informations de publication

Date de publication:
Jun 2022
Historique:
received: 17 12 2021
revised: 09 03 2022
accepted: 13 03 2022
pubmed: 23 3 2022
medline: 31 5 2022
entrez: 22 3 2022
Statut: ppublish

Résumé

Differential diagnosis of pathogenic diseases, presently coronavirus disease 2019 (COVID-19) and influenza, is crucial with due attention to their superspreading events, presumably long incubation period, particular complications, and treatments. In this paper, a label-free, self-powered, and ultrafast immunosensor device working based on triboelectric effect is proposed. Equilibrium constants of specific antibody-antigen reactions are accompanied by IEP-relevant electric charges of antigens to recognize SARS-CoV-2 and H1N1. Simulation attributes including fluid flow and geometrical parameters are optimized so that the maximum capture efficiency of 85.63% is achieved. Accordingly, antibody-antigen complexes form electric double layers (EDLs) across the channel interfaces. The resultant built-in electric field affects the following external electric field derived from triboelectricity, leading to the variation of open-circuit voltage as a sensing metric. The device is flexible to operate in conductor-to-dielectric single-electrode and contact-separation modes simultaneously. While the detection limit is reduced utilizing the single-electrode mode compared to the latter one, surface treatment of the triboelectric pair contributes to the sensitivity enhancement. A threshold value equal to -4.113 V is featured to discriminate these two viruses in a vast detectable region; however, further surface engineering can allow the on-site detection of any electrically-charged pathogen applying the emerging triboelectric immunosensor enjoying a lower detection limit.

Identifiants

pubmed: 35316730
pii: S1567-5394(22)00047-0
doi: 10.1016/j.bioelechem.2022.108096
pmc: PMC8923711
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

108096

Informations de copyright

Copyright © 2022 Elsevier B.V. All rights reserved.

Références

Adv Mater. 2021 Jan;33(1):e2005448
pubmed: 33230875
Sci Rep. 2015 May 13;5:9809
pubmed: 25966875
Nature. 2020 May;581(7807):221-224
pubmed: 32225175
Chem Eng J. 2022 Feb 15;430:132966
pubmed: 34690533
Anal Chem. 2021 Oct 5;93(39):13389-13397
pubmed: 34554727
Anal Chem. 2019 Jan 15;91(2):1222-1226
pubmed: 30569701
Nat Biomed Eng. 2020 Dec;4(12):1150-1158
pubmed: 33273714
PLoS Pathog. 2012 Sep;8(9):e1002914
pubmed: 23028314
Nat Mater. 2021 May;20(5):593-605
pubmed: 33589798
Biomicrofluidics. 2016 Apr 12;10(2):024119
pubmed: 27158287
Biosens Bioelectron. 2021 Dec 15;194:113629
pubmed: 34534949
Med Sci Monit. 2021 May 12;27:e932361
pubmed: 33976103
Methods. 2022 Jul;203:594-603
pubmed: 33045362
Viruses. 2020 Dec 29;13(1):
pubmed: 33383888
Sensors (Basel). 2022 Feb 18;22(4):
pubmed: 35214519
J Chem Phys. 2011 May 21;134(19):194101
pubmed: 21599038
Micromachines (Basel). 2021 Mar 22;12(3):
pubmed: 33810006
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Jan 5;264:120236
pubmed: 34358781
RSC Adv. 2021 May 10;11(24):14737-14745
pubmed: 35423963
Sensors (Basel). 2020 Mar 31;20(7):
pubmed: 32244343
IEEE Sens J. 2021 May 31;21(16):17643-17656
pubmed: 35790098
Biosens Bioelectron. 2021 May 1;179:113074
pubmed: 33596516
Diagnostics (Basel). 2021 Oct 05;11(10):
pubmed: 34679536
Anal Chem. 2016 Jan 5;88(1):1030-8
pubmed: 26609552
J Nanobiotechnology. 2021 Oct 30;19(1):348
pubmed: 34717656
Sci Adv. 2021 Sep 17;7(38):eabg8387
pubmed: 34524851
Acta Pharmacol Sin. 2020 Sep;41(9):1141-1149
pubmed: 32747721
Biosens Bioelectron. 2018 Mar 15;101:146-152
pubmed: 29065339
Mikrochim Acta. 2021 Sep 2;188(10):316
pubmed: 34476615
Chem Rev. 2018 Feb 28;118(4):1691-1741
pubmed: 29319301
Microb Biotechnol. 2020 Jul;13(4):950-961
pubmed: 32333644
Langmuir. 2016 Jan 19;32(2):380-400
pubmed: 26599980
Anal Chem. 2020 Jul 21;92(14):9454-9458
pubmed: 32615038
Adv Mater. 2021 Sep;33(35):e2008276
pubmed: 34245059
Lab Chip. 2021 May 4;21(9):1634-1660
pubmed: 33705507
Anal Chem. 2020 Feb 4;92(3):2809-2814
pubmed: 31939295
Acta Biomater. 2013 Nov;9(11):8932-41
pubmed: 23791676
Anal Chem. 2021 Sep 7;93(35):11956-11964
pubmed: 34424659
Sci Rep. 2020 Nov 30;10(1):20818
pubmed: 33257702
J Colloid Interface Sci. 2021 Jul 15;594:195-203
pubmed: 33761394
Anal Chem. 2021 Feb 9;93(5):2916-2925
pubmed: 33492928
Int J Mol Sci. 2022 Jan 08;23(2):
pubmed: 35054850
Sci Rep. 2021 Sep 23;11(1):18955
pubmed: 34556690
Nat Rev Immunol. 2018 Jan;18(1):46-61
pubmed: 29063907
Electrochim Acta. 2022 Jan 20;403:139581
pubmed: 34898691
J Appl Microbiol. 2010 Aug;109(2):388-397
pubmed: 20102425
Micromachines (Basel). 2021 Apr 02;12(4):
pubmed: 33918184
Electrophoresis. 2021 Mar;42(6):687-692
pubmed: 33533060

Auteurs

Tara Ghafouri (T)

Nanostructured-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 1631714191, Iran.

Negin Manavizadeh (N)

Nanostructured-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 1631714191, Iran. Electronic address: manavizadeh@kntu.ac.ir.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH