Design and simulation of a millifluidic device for differential detection of SARS-CoV-2 and H1N1 based on triboelectricity.
Antibody-antigen interaction
Electric double layer (EDL)
Respiratory diseases
Triboelectric effect
Virus detection
Journal
Bioelectrochemistry (Amsterdam, Netherlands)
ISSN: 1878-562X
Titre abrégé: Bioelectrochemistry
Pays: Netherlands
ID NLM: 100953583
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
received:
17
12
2021
revised:
09
03
2022
accepted:
13
03
2022
pubmed:
23
3
2022
medline:
31
5
2022
entrez:
22
3
2022
Statut:
ppublish
Résumé
Differential diagnosis of pathogenic diseases, presently coronavirus disease 2019 (COVID-19) and influenza, is crucial with due attention to their superspreading events, presumably long incubation period, particular complications, and treatments. In this paper, a label-free, self-powered, and ultrafast immunosensor device working based on triboelectric effect is proposed. Equilibrium constants of specific antibody-antigen reactions are accompanied by IEP-relevant electric charges of antigens to recognize SARS-CoV-2 and H1N1. Simulation attributes including fluid flow and geometrical parameters are optimized so that the maximum capture efficiency of 85.63% is achieved. Accordingly, antibody-antigen complexes form electric double layers (EDLs) across the channel interfaces. The resultant built-in electric field affects the following external electric field derived from triboelectricity, leading to the variation of open-circuit voltage as a sensing metric. The device is flexible to operate in conductor-to-dielectric single-electrode and contact-separation modes simultaneously. While the detection limit is reduced utilizing the single-electrode mode compared to the latter one, surface treatment of the triboelectric pair contributes to the sensitivity enhancement. A threshold value equal to -4.113 V is featured to discriminate these two viruses in a vast detectable region; however, further surface engineering can allow the on-site detection of any electrically-charged pathogen applying the emerging triboelectric immunosensor enjoying a lower detection limit.
Identifiants
pubmed: 35316730
pii: S1567-5394(22)00047-0
doi: 10.1016/j.bioelechem.2022.108096
pmc: PMC8923711
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
108096Informations de copyright
Copyright © 2022 Elsevier B.V. All rights reserved.
Références
Adv Mater. 2021 Jan;33(1):e2005448
pubmed: 33230875
Sci Rep. 2015 May 13;5:9809
pubmed: 25966875
Nature. 2020 May;581(7807):221-224
pubmed: 32225175
Chem Eng J. 2022 Feb 15;430:132966
pubmed: 34690533
Anal Chem. 2021 Oct 5;93(39):13389-13397
pubmed: 34554727
Anal Chem. 2019 Jan 15;91(2):1222-1226
pubmed: 30569701
Nat Biomed Eng. 2020 Dec;4(12):1150-1158
pubmed: 33273714
PLoS Pathog. 2012 Sep;8(9):e1002914
pubmed: 23028314
Nat Mater. 2021 May;20(5):593-605
pubmed: 33589798
Biomicrofluidics. 2016 Apr 12;10(2):024119
pubmed: 27158287
Biosens Bioelectron. 2021 Dec 15;194:113629
pubmed: 34534949
Med Sci Monit. 2021 May 12;27:e932361
pubmed: 33976103
Methods. 2022 Jul;203:594-603
pubmed: 33045362
Viruses. 2020 Dec 29;13(1):
pubmed: 33383888
Sensors (Basel). 2022 Feb 18;22(4):
pubmed: 35214519
J Chem Phys. 2011 May 21;134(19):194101
pubmed: 21599038
Micromachines (Basel). 2021 Mar 22;12(3):
pubmed: 33810006
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Jan 5;264:120236
pubmed: 34358781
RSC Adv. 2021 May 10;11(24):14737-14745
pubmed: 35423963
Sensors (Basel). 2020 Mar 31;20(7):
pubmed: 32244343
IEEE Sens J. 2021 May 31;21(16):17643-17656
pubmed: 35790098
Biosens Bioelectron. 2021 May 1;179:113074
pubmed: 33596516
Diagnostics (Basel). 2021 Oct 05;11(10):
pubmed: 34679536
Anal Chem. 2016 Jan 5;88(1):1030-8
pubmed: 26609552
J Nanobiotechnology. 2021 Oct 30;19(1):348
pubmed: 34717656
Sci Adv. 2021 Sep 17;7(38):eabg8387
pubmed: 34524851
Acta Pharmacol Sin. 2020 Sep;41(9):1141-1149
pubmed: 32747721
Biosens Bioelectron. 2018 Mar 15;101:146-152
pubmed: 29065339
Mikrochim Acta. 2021 Sep 2;188(10):316
pubmed: 34476615
Chem Rev. 2018 Feb 28;118(4):1691-1741
pubmed: 29319301
Microb Biotechnol. 2020 Jul;13(4):950-961
pubmed: 32333644
Langmuir. 2016 Jan 19;32(2):380-400
pubmed: 26599980
Anal Chem. 2020 Jul 21;92(14):9454-9458
pubmed: 32615038
Adv Mater. 2021 Sep;33(35):e2008276
pubmed: 34245059
Lab Chip. 2021 May 4;21(9):1634-1660
pubmed: 33705507
Anal Chem. 2020 Feb 4;92(3):2809-2814
pubmed: 31939295
Acta Biomater. 2013 Nov;9(11):8932-41
pubmed: 23791676
Anal Chem. 2021 Sep 7;93(35):11956-11964
pubmed: 34424659
Sci Rep. 2020 Nov 30;10(1):20818
pubmed: 33257702
J Colloid Interface Sci. 2021 Jul 15;594:195-203
pubmed: 33761394
Anal Chem. 2021 Feb 9;93(5):2916-2925
pubmed: 33492928
Int J Mol Sci. 2022 Jan 08;23(2):
pubmed: 35054850
Sci Rep. 2021 Sep 23;11(1):18955
pubmed: 34556690
Nat Rev Immunol. 2018 Jan;18(1):46-61
pubmed: 29063907
Electrochim Acta. 2022 Jan 20;403:139581
pubmed: 34898691
J Appl Microbiol. 2010 Aug;109(2):388-397
pubmed: 20102425
Micromachines (Basel). 2021 Apr 02;12(4):
pubmed: 33918184
Electrophoresis. 2021 Mar;42(6):687-692
pubmed: 33533060