Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 03 2022
22 03 2022
Historique:
received:
08
04
2021
accepted:
07
02
2022
entrez:
23
3
2022
pubmed:
24
3
2022
medline:
5
4
2022
Statut:
epublish
Résumé
Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.
Identifiants
pubmed: 35318324
doi: 10.1038/s41467-022-28776-w
pii: 10.1038/s41467-022-28776-w
pmc: PMC8940940
doi:
Substances chimiques
RNA, Messenger
0
Pseudouridine
1445-07-4
RNA
63231-63-0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1536Subventions
Organisme : NICHD NIH HHS
ID : F30 HD100123
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD086634
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA219847
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM122579
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2022. The Author(s).
Références
Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).
pubmed: 30846391
pmcid: 6453548
doi: 10.1016/j.ymthe.2019.02.012
Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).
pubmed: 29326426
pmcid: 5906799
doi: 10.1038/nrd.2017.243
Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).
pubmed: 25233993
doi: 10.1038/nrd4278
Jackson, N. A. C., Kester, K. E., Casimiro, D., Gurunathan, S. & DeRosa, F. The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines 5, 11 (2020).
pubmed: 32047656
pmcid: 7000814
doi: 10.1038/s41541-020-0159-8
Weng, Y. et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020).
pubmed: 32088327
doi: 10.1016/j.biotechadv.2020.107534
Crommelin, D. J. A., Anchordoquy, T. J., Volkin, D. B., Jiskoot, W. & Mastrobattista, E. Addressing the cold reality of mRNA vaccine stability. J. Pharm. Sci. 110, 997–1001 (2021).
pubmed: 33321139
doi: 10.1016/j.xphs.2020.12.006
Wayment-Steele, H. K. et al. Theoretical basis for stabilizing messenger RNA through secondary structure design. Nucleic Acids Res. 49, 10604–10617 (2021).
pubmed: 34520542
pmcid: 8499941
doi: 10.1093/nar/gkab764
Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).
pubmed: 31712433
pmcid: 6883848
doi: 10.1073/pnas.1908052116
Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015).
pubmed: 26050989
pmcid: 4817881
doi: 10.1038/mt.2015.103
Lee, J. et al. RNA design rules from a massive open laboratory. Proc. Natl Acad. Sci. USA 111, 2122–2127 (2014).
pubmed: 24469816
pmcid: 3926058
doi: 10.1073/pnas.1313039111
Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372 (1999).
doi: 10.1021/ja990592p
Jia, L. et al. Decoding mRNA translatability and stability from the 5′ UTR. Nat. Struct. Mol. Biol. 27, 814–821 (2020).
pubmed: 32719458
doi: 10.1038/s41594-020-0465-x
Asrani, K. H. et al. Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biol. 15, 756–762 (2018).
pubmed: 29578372
pmcid: 6152433
Sultana, N. et al. Optimization of 5′ untranslated region of modified mRNA for use in cardiac or hepatic ischemic injury. Mol. Ther. Methods Clin. Dev. 17, 622–633 (2020).
pubmed: 32300609
pmcid: 7150433
doi: 10.1016/j.omtm.2020.03.019
Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).
pubmed: 29165424
doi: 10.1038/nrm.2017.103
Sample, P. J. et al. Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803–809 (2019).
pubmed: 31267113
pmcid: 7100133
doi: 10.1038/s41587-019-0164-5
Cao, J. et al. High-throughput 5′ UTR engineering for enhanced protein production in non-viral gene therapies. Nat Commun. 12, 4138 (2021).
pubmed: 34230498
pmcid: 8260622
doi: 10.1038/s41467-021-24436-7
Zhao, W. et al. Massively parallel functional annotation of 3′ untranslated regions. Nat. Biotechnol. 32, 387–391 (2014).
pubmed: 24633241
pmcid: 3981918
doi: 10.1038/nbt.2851
Orlandini von Niessen, A. G. et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening. Mol. Ther. 27, 824–836 (2019).
pubmed: 30638957
doi: 10.1016/j.ymthe.2018.12.011
Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
pubmed: 21593866
doi: 10.1038/nature10098
Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).
pubmed: 22367541
pmcid: 3663483
doi: 10.1038/nature10912
Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).
pubmed: 22552098
pmcid: 3347774
doi: 10.1038/nature11083
Leppek, K. et al. Gene- and species-specific Hox mRNA translation by ribosome expansion segments. Mol. Cell 80, 980–995.e13 (2020).
pubmed: 33202249
pmcid: 7769145
doi: 10.1016/j.molcel.2020.10.023
Patel, M., Siegel, A. J. & Berry, J. O. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. J. Biol. Chem. 281, 25485–25491 (2006).
pubmed: 16803877
doi: 10.1074/jbc.M604162200
Wilusz, J. E. et al. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 26, 2392–2407 (2012).
pubmed: 23073843
pmcid: 3489998
doi: 10.1101/gad.204438.112
Hickey, K. L. et al. GIGYF2 and 4EHP inhibit translation initiation of defective messenger RNAs to assist ribosome-associated quality control. Mol. Cell 79, 950–962.e6 (2020).
pubmed: 32726578
pmcid: 7891188
doi: 10.1016/j.molcel.2020.07.007
Wollner, C. J. et al. A mRNA-LNP vaccine against Dengue Virus elicits robust, serotype-specific immunity. J Virol. 95, e02482-20 (2021).
pubmed: 33762420
pmcid: 8315947
doi: 10.1128/JVI.02482-20
Ferizi, M. et al. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts. Sci. Rep. 6, 39149 (2016).
pubmed: 27974853
pmcid: 5156912
doi: 10.1038/srep39149
Zeng, C. et al. Leveraging mRNAs sequences express SARS-CoV-2 antigens vivo. Adv Mater. 32, e2004452 (2020).
pubmed: 32875709
pmcid: 8191860
doi: 10.1002/adma.202004452
Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921.e10 (2020).
pubmed: 32330414
pmcid: 7179501
doi: 10.1016/j.cell.2020.04.011
Huston, N. C. et al. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol. Cell 81, 584–598.e5 (2021).
pubmed: 33444546
pmcid: 7775661
doi: 10.1016/j.molcel.2020.12.041
Chiu, W.-W., Kinney, R. M. & Dreher, T. W. Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J. Virol. 79, 8303–8315 (2005).
pubmed: 15956576
pmcid: 1143759
doi: 10.1128/JVI.79.13.8303-8315.2005
Holden, K. L. & Harris, E. Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329, 119–133 (2004).
pubmed: 15476880
doi: 10.1016/j.virol.2004.08.004
Simon, A. E. & Miller, W. A. 3′ cap-independent translation enhancers of plant viruses. Annu. Rev. Microbiol. 67, 21–42 (2013).
pubmed: 23682606
pmcid: 4034384
doi: 10.1146/annurev-micro-092412-155609
Nicholson, B. L. & White, K. A. 3′ Cap-independent translation enhancers of positive-strand RNA plant viruses. Curr. Opin. Virol. 1, 373–380 (2011).
pubmed: 22440838
doi: 10.1016/j.coviro.2011.10.002
Gallie, D. R. The 5′-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res. 30, 3401–3411 (2002).
pubmed: 12140325
pmcid: 137081
doi: 10.1093/nar/gkf457
Gallie, D. R., Tanguay, R. L. & Leathers, V. The tobacco etch viral 5′ leader and poly(A) tail are functionally synergistic regulators of translation. Gene 165, 233–238 (1995).
pubmed: 8522182
doi: 10.1016/0378-1119(95)00521-7
Shirokikh, N. E. & Spirin, A. S. Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc. Natl Acad. Sci. USA 105, 10738–10743 (2008).
pubmed: 18658239
pmcid: 2485544
doi: 10.1073/pnas.0804940105
Sokoloski, K. J. et al. Sindbis virus usurps the cellular HuR protein to stabilize its transcripts and promote productive infections in mammalian and mosquito cells. Cell Host Microbe 8, 196–207 (2010).
pubmed: 20709296
pmcid: 2929003
doi: 10.1016/j.chom.2010.07.003
Palusa, S., Ndaluka, C., Bowen, R. A., Wilusz, C. J. & Wilusz, J. The 3′ untranslated region of the rabies virus glycoprotein mRNA specifically interacts with cellular PCBP2 protein and promotes transcript stability. PLoS ONE 7, e33561 (2012).
pubmed: 22438951
pmcid: 3306424
doi: 10.1371/journal.pone.0033561
Garneau, N. L. et al. The 3′ untranslated region of sindbis virus represses deadenylation of viral transcripts in mosquito and Mammalian cells. J. Virol. 82, 880–892 (2008).
pubmed: 17977976
doi: 10.1128/JVI.01205-07
Kozak, M. Features in the 5′ non-coding sequences of rabbit alpha and beta-globin mRNAs that affect translational efficiency. J. Mol. Biol. 235, 95–110 (1994).
pubmed: 8289269
doi: 10.1016/S0022-2836(05)80019-1
Babendure, J. R., Babendure, J. L., Ding, J.-H. & Tsien, R. Y. Control of mammalian translation by mRNA structure near caps. RNA 12, 851–861 (2006).
pubmed: 16540693
pmcid: 1440912
doi: 10.1261/rna.2309906
Osuna, B. A., Howard, C. J., Kc, S., Frost, A. & Weinberg, D. E. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. Elife 6, e27949 (2017).
England, C. G., Ehlerding, E. B. & Cai, W. Nanoluc: a small luciferase is brightening up the field of bioluminescence. Bioconjug. Chem. 27, 1175–1187 (2016).
pubmed: 27045664
pmcid: 4871753
doi: 10.1021/acs.bioconjchem.6b00112
Sharp, P. M. & Li, W. H. The codon Adaptation Index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).
pubmed: 3547335
pmcid: 340524
doi: 10.1093/nar/15.3.1281
Zhang, H. et al. LinearDesign: efficient algorithms for optimized mRNA sequence design. Preprint at https://arxiv.org/abs/2004.10177 (2020).
Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).
pubmed: 24270811
doi: 10.1038/nature12756
Shah, P., Ding, Y., Niemczyk, M., Kudla, G. & Plotkin, J. B. Rate-limiting steps in yeast protein translation. Cell 153, 1589–1601 (2013).
pubmed: 23791185
pmcid: 3694300
doi: 10.1016/j.cell.2013.05.049
Tuller, T. & Zur, H. Multiple roles of the coding sequence 5′ end in gene expression regulation. Nucleic Acids Res 43, 13–28 (2015).
pubmed: 25505165
doi: 10.1093/nar/gku1313
Manfredonia, I. & Incarnato, D. Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies. Biochem. Soc. Trans. 49, 341–352 (2021).
pubmed: 33367597
doi: 10.1042/BST20200670
Manfredonia, I. et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. 48, 12436–12452 (2020).
pubmed: 33166999
pmcid: 7736786
doi: 10.1093/nar/gkaa1053
Lan, T. C. T. et al. Structure of the full SARS-CoV-2 RNA genome in infected cells. Preprint at BioRxiv https://doi.org/10.1101/2020.06.29.178343 (2020).
Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30 (2018).
pubmed: 29018283
doi: 10.1038/nrm.2017.91
Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).
pubmed: 17245413
doi: 10.1038/nrm2104
Mayr, C. What are 3′ UTRs doing? Cold Spring Harb. Perspect. Biol. 11, (2019).
Matoulkova, E., Michalova, E., Vojtesek, B. & Hrstka, R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 9, 563–576 (2012).
pubmed: 22614827
doi: 10.4161/rna.20231
Mayya, V. K. & Duchaine, T. F. Ciphers and executioners: how 3′-untranslated regions determine the fate of messenger RNAs. Front. Genet. 10, 6 (2019).
pubmed: 30740123
pmcid: 6357968
doi: 10.3389/fgene.2019.00006
Leonhardt, C. et al. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers. Nanomedicine 10, 679–688 (2014).
pubmed: 24333584
doi: 10.1016/j.nano.2013.11.008
Wang, H. et al. Diversity of putative archaeal RNA viruses in metagenomic datasets of a yellowstone acidic hot spring. Springerplus 4, 189 (2015).
pubmed: 25918685
pmcid: 4405519
doi: 10.1186/s40064-015-0973-z
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. E. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).
pubmed: 25028896
pmcid: 4259394
doi: 10.1038/nmeth.3029
Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).
pubmed: 27819661
doi: 10.1038/nmeth.4057
Kaukinen, U., Lyytikäinen, S., Mikkola, S. & Lönnberg, H. The reactivity of phosphodiester bonds within linear single-stranded oligoribonucleotides is strongly dependent on the base sequence. Nucleic Acids Res. 30, 468–474 (2002).
pubmed: 11788709
pmcid: 99829
doi: 10.1093/nar/30.2.468
Mikkola, S., Kaukinen, U. & Lönnberg, H. The effect of secondary structure on cleavage of the phosphodiester bonds of RNA. Cell Biochem. Biophys. 34, 95–119 (2001).
pubmed: 11394443
doi: 10.1385/CBB:34:1:95
Seetin, M. G., Kladwang, W., Bida, J. P. & Das, R. Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. Methods Mol. Biol. 1086, 95–117 (2014).
pubmed: 24136600
doi: 10.1007/978-1-62703-667-2_6
Regulski, E. E. & Breaker, R. R. In-line probing analysis of riboswitches. Methods Mol. Biol. 419, 53–67 (2008).
pubmed: 18369975
doi: 10.1007/978-1-59745-033-1_4
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
pubmed: 22115189
pmcid: 3319429
doi: 10.1186/1748-7188-6-26
Diedenhofen, B. & Musch, J. cocor: a comprehensive solution for the statistical comparison of correlations. PLoS ONE 10, e0121945 (2015).
pubmed: 25835001
pmcid: 4383486
doi: 10.1371/journal.pone.0121945
Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).
pubmed: 18797453
doi: 10.1038/mt.2008.200
Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).
pubmed: 16111635
doi: 10.1016/j.immuni.2005.06.008
Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).
pubmed: 17038590
doi: 10.1126/science.1132505
Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).
pubmed: 20457754
pmcid: 2943593
doi: 10.1093/nar/gkq347
Nallagatla, S. R. & Bevilacqua, P. C. Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner. RNA 14, 1201–1213 (2008).
pubmed: 18426922
pmcid: 2390794
doi: 10.1261/rna.1007408
Davis, D. R. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23, 5020–5026 (1995).
pubmed: 8559660
pmcid: 307508
doi: 10.1093/nar/23.24.5020
Kierzek, E. et al. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 42, 3492–3501 (2014).
pubmed: 24369424
doi: 10.1093/nar/gkt1330
Cohen, B. & Skiena, S. Natural selection and algorithmic design of mRNA. J. Comput. Biol. 10, 419–432 (2003).
pubmed: 12935336
doi: 10.1089/10665270360688101
Terai, G., Kamegai, S. & Asai, K. CDSfold: an algorithm for designing a protein-coding sequence with the most stable secondary structure. Bioinformatics 32, 828–834 (2016).
pubmed: 26589279
doi: 10.1093/bioinformatics/btv678
Yoffe, A. M. et al. Predicting the sizes of large RNA molecules. Proc. Natl Acad. Sci. USA 105, 16153–16158 (2008).
pubmed: 18845685
pmcid: 2570976
doi: 10.1073/pnas.0808089105
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
pubmed: 33301246
doi: 10.1056/NEJMoa2034577
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
pubmed: 33378609
doi: 10.1056/NEJMoa2035389
Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2020).
pubmed: 33024307
doi: 10.1038/s41579-020-00459-7
Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).
pubmed: 32756549
pmcid: 7581537
doi: 10.1038/s41586-020-2622-0
Juszkiewicz, S. et al. Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. Elife 9, e60038 (2020).
Wu, C. C.-C., Peterson, A., Zinshteyn, B., Regot, S. & Green, R. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182, 404–416.e14 (2020).
pubmed: 32610081
pmcid: 7384957
doi: 10.1016/j.cell.2020.06.006
Takyar, S., Hickerson, R. P. & Noller, H. F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).
pubmed: 15652481
doi: 10.1016/j.cell.2004.11.042
Qu, X. et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118–121 (2011).
pubmed: 21734708
pmcid: 4170678
doi: 10.1038/nature10126
Linder, P. & Jankowsky, E. From unwinding to clamping - the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505–516 (2011).
pubmed: 21779027
doi: 10.1038/nrm3154
Zhang, L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol. Immunol. 15, 182–184 (2018).
pubmed: 28890542
doi: 10.1038/cmi.2017.92
Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).
pubmed: 28678784
doi: 10.1038/nature23003
Xue, S. et al. RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature 517, 33–38 (2015).
pubmed: 25409156
doi: 10.1038/nature14010
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Liu, D. Algorithms for efficiently collapsing reads with Unique Molecular Identifiers. PeerJ 7, e8275 (2019).
pubmed: 31871845
pmcid: 6921982
doi: 10.7717/peerj.8275
Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7, 1848–1857 (2012).
pubmed: 22894855
pmcid: 3501149
doi: 10.1021/cb3002478
Incarnato, D., Morandi, E., Simon, L. M. & Oliviero, S. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Nucleic Acids Res 46, e97 (2018).
pubmed: 29893890
pmcid: 6144828
doi: 10.1093/nar/gky486
Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinforma. 11, 129 (2010).
doi: 10.1186/1471-2105-11-129
Kladwang, W. et al. Standardization of RNA chemical mapping experiments. Biochemistry 53, 3063–3065 (2014).
pubmed: 24766159
doi: 10.1021/bi5003426
Cheng, C. Y. et al. Consistent global structures of complex RNA states through multidimensional chemical mapping. Elife 4, e07600 (2015).
pubmed: 26035425
pmcid: 4495719
doi: 10.7554/eLife.07600
Kim, H., Cordero, P., Das, R. & Yoon, S. HiTRACE-Web: an online tool for robust analysis of high-throughput capillary electrophoresis. Nucleic Acids Res. 41, W492–W498 (2013).
pubmed: 23761448
pmcid: 3692083
doi: 10.1093/nar/gkt501
Gertheiss, J. & Tutz, G. Penalized regression with ordinal predictors. Int. Stat. Rev. 77, 345–365 (2009).
doi: 10.1111/j.1751-5823.2009.00088.x
Wu, X. & Bartel, D. P. kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences. Nucleic Acids Res. 45, W534–W538 (2017).
pubmed: 28460012
pmcid: 5570168
doi: 10.1093/nar/gkx323
Yesselman, J. D. et al. Updates to the RNA mapping database (RMDB), version 2. Nucleic Acids Res. 46, D375–D379 (2018).
pubmed: 30053264
doi: 10.1093/nar/gkx873