Stabilization of Lead-Reduced Metal Halide Perovskite Nanocrystals by High-Entropy Alloying.
Journal
Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056
Informations de publication
Date de publication:
06 Apr 2022
06 Apr 2022
Historique:
pubmed:
24
3
2022
medline:
24
3
2022
entrez:
23
3
2022
Statut:
ppublish
Résumé
Colloidal metal halide perovskite (MHP) nanocrystals (NCs) are an emerging class of fluorescent quantum dots (QDs) for next-generation optoelectronics. A great hurdle hindering practical applications, however, is their high lead content, where most attempts addressing the challenge in the literature compromised the material's optical performance or colloidal stability. Here, we present a postsynthetic approach that stabilizes the lead-reduced MHP NCs through high-entropy alloying. Upon doping the NCs with multiple elements in considerably high concentrations, the resulting high-entropy perovskite (HEP) NCs remain to possess excellent colloidal stability and narrowband emission, with even higher photoluminescence (PL) quantum yields, η
Identifiants
pubmed: 35319205
doi: 10.1021/jacs.1c12294
pmc: PMC8991010
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5864-5870Références
J Phys Chem Lett. 2020 Feb 6;11(3):1178-1188
pubmed: 31976669
Nature. 2021 Mar;591(7848):72-77
pubmed: 33658694
J Mater Chem C Mater. 2021 Mar 25;9(17):5771-5778
pubmed: 33996098
ACS Nano. 2016 Oct 25;10(10):9720-9729
pubmed: 27684448
Nano Lett. 2017 Dec 13;17(12):8005-8011
pubmed: 29182877
Adv Mater. 2015 Sep 16;27(35):5176-83
pubmed: 26247401
J Am Chem Soc. 2018 Aug 8;140(31):9942-9951
pubmed: 30008218
Nat Commun. 2020 Jan 20;11(1):387
pubmed: 31959755
ACS Energy Lett. 2019 Jan 11;4(1):63-74
pubmed: 30662955
J Am Chem Soc. 2020 Mar 11;142(10):4550-4554
pubmed: 32105461
Nano Lett. 2018 Jun 13;18(6):3792-3799
pubmed: 29746137
J Mater Sci. 2015;50(2):493-518
pubmed: 26346887
Sci Rep. 2017 Oct 20;7(1):13643
pubmed: 29057892
Nano Lett. 2018 Mar 14;18(3):2060-2066
pubmed: 29504759
J Am Chem Soc. 2021 Aug 25;143(33):13418-13427
pubmed: 34375098
Chem Mater. 2020 Dec 22;32(24):10641-10652
pubmed: 33384476
Angew Chem Int Ed Engl. 2021 Sep 27;60(40):21636-21660
pubmed: 33730428
Nano Lett. 2015 Aug 12;15(8):5635-40
pubmed: 26207728
Scanning. 2013 May-Jun;35(3):141-68
pubmed: 22886950
J Am Chem Soc. 2018 Mar 14;140(10):3626-3634
pubmed: 29341604
ACS Nano. 2021 Jul 27;15(7):10775-10981
pubmed: 34137264
J Am Chem Soc. 2017 Jan 18;139(2):731-737
pubmed: 27977176
Chem Rev. 2019 Mar 13;119(5):3296-3348
pubmed: 30758194
Nano Lett. 2020 May 13;20(5):3734-3739
pubmed: 32348146
Adv Mater. 2017 Aug;29(29):
pubmed: 28585275
ACS Nano. 2018 Feb 27;12(2):1611-1617
pubmed: 29309723
J Am Chem Soc. 2020 Feb 5;142(5):2364-2374
pubmed: 31917562
J Am Chem Soc. 2016 Mar 9;138(9):2941-4
pubmed: 26901659
Nano Lett. 2021 Jan 13;21(1):6-9
pubmed: 33347308
Nat Mater. 2018 May;17(5):394-405
pubmed: 29459748
Nano Lett. 2019 Mar 13;19(3):1552-1559
pubmed: 30741555
Science. 2016 Oct 7;354(6308):92-95
pubmed: 27846497
Angew Chem Int Ed Engl. 2021 Jan 11;60(2):660-665
pubmed: 32964638
J Am Chem Soc. 2019 May 22;141(20):8296-8305
pubmed: 31055917
J Phys Chem Lett. 2019 Dec 19;10(24):7560-7567
pubmed: 31736317
Angew Chem Int Ed Engl. 2017 Oct 23;56(44):13650-13654
pubmed: 28865137
J Am Chem Soc. 2017 Mar 22;139(11):4087-4097
pubmed: 28260380
J Phys Chem Lett. 2018 Dec 20;9(24):7079-7084
pubmed: 30509067
ACS Nano. 2017 Feb 28;11(2):2239-2247
pubmed: 28145697
J Am Chem Soc. 2016 Nov 16;138(45):14954-14961
pubmed: 27756131
ACS Appl Electron Mater. 2020 Oct 27;2(10):3211-3220
pubmed: 33196046