Hypoiodite-Catalyzed Oxidative Umpolung of Indoles for Enantioselective Dearomatization.
Journal
Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056
Informations de publication
Date de publication:
06 04 2022
06 04 2022
Historique:
pubmed:
24
3
2022
medline:
8
4
2022
entrez:
23
3
2022
Statut:
ppublish
Résumé
Here we report the oxidative umpolung of 2,3-disubstituted indoles toward enantioselective dearomative aza-spirocyclization to give the corresponding spiroindolenines using chiral quaternary ammonium hypoiodite catalysis. Mechanistic studies revealed the umpolung reactivity of C3 of indoles by iodination of the indole nitrogen atom. Moreover, the introduction of pyrazole as an electron-withdrawing auxiliary group at C2 suppressed a competitive dissociative racemic pathway, and enantioselective spirocyclization proceeded to give not only spiropyrrolidines but also four-membered spiroazetidines that are otherwise difficult to access.
Identifiants
pubmed: 35319875
doi: 10.1021/jacs.2c01852
pmc: PMC8991020
doi:
Substances chimiques
Indoles
0
Iodine Compounds
0
hypoiodous acid
2PYC923C5W
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5756-5761Références
Nat Prod Rep. 2019 Nov 13;36(11):1589-1605
pubmed: 30839047
Acc Chem Res. 2020 Apr 21;53(4):974-987
pubmed: 32275392
Org Lett. 2021 Sep 17;23(18):7139-7143
pubmed: 34449237
Chemistry. 2019 Oct 28;25(60):13654-13664
pubmed: 31361354
Nat Chem. 2020 Apr;12(4):353-362
pubmed: 32203442
Chem Soc Rev. 2010 Nov;39(11):4449-65
pubmed: 20848039
Org Lett. 2022 Jan 28;24(3):842-847
pubmed: 35025513
Science. 2010 Jun 11;328(5984):1376-9
pubmed: 20538945
Org Biomol Chem. 2013 Aug 28;11(32):5206-12
pubmed: 23824171
Org Lett. 2020 Oct 16;22(20):8049-8054
pubmed: 32996315
Angew Chem Int Ed Engl. 2007;46(23):4222-66
pubmed: 17525926
J Am Chem Soc. 2018 Mar 7;140(9):3394-3402
pubmed: 29432006
Chem Soc Rev. 2020 Jan 2;49(1):286-300
pubmed: 31829319
Org Biomol Chem. 2016 Aug 7;14(29):6932-6
pubmed: 27341692
Nat Prod Rep. 2015 Sep 23;32(10):1389-471
pubmed: 26151910
J Am Chem Soc. 2019 Feb 20;141(7):2832-2837
pubmed: 30672705
J Am Chem Soc. 2007 Oct 24;129(42):12857-69
pubmed: 17900115
Org Lett. 2012 Dec 7;14(23):5832-5
pubmed: 23163878
Mini Rev Med Chem. 2009 Jun;9(7):782-93
pubmed: 19519503
Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14531-14535
pubmed: 28925055
Nature. 2018 Apr;556(7702):447-451
pubmed: 29695848
Med Res Rev. 1988 Apr-Jun;8(2):231-308
pubmed: 3288822
Chem Commun (Camb). 2021 Jan 5;57(1):27-44
pubmed: 33300929
Chem Soc Rev. 2019 Jun 17;48(12):3406-3424
pubmed: 31150035
Chemistry. 2019 Jul 5;25(38):8916-8935
pubmed: 30994212
Science. 2014 Jul 18;345(6194):291-4
pubmed: 25035486
Chemistry. 2011 Feb 1;17(5):1388-408
pubmed: 21268138
Org Biomol Chem. 2018 Mar 28;16(12):2039-2042
pubmed: 29512672
Acc Chem Res. 2020 Feb 18;53(2):425-446
pubmed: 31820922
Chem Rec. 2018 Sep;18(9):1292-1305
pubmed: 29513383
Angew Chem Int Ed Engl. 2020 Sep 21;59(39):17110-17117
pubmed: 32588547
Chem Rev. 2016 Mar 9;116(5):3328-435
pubmed: 26861673
J Am Chem Soc. 2016 Mar 2;138(8):2664-9
pubmed: 26859788
Angew Chem Int Ed Engl. 2019 Dec 9;58(50):18069-18074
pubmed: 31587423
Nat Commun. 2020 Jan 7;11(1):3
pubmed: 31911586
J Org Chem. 2006 Nov 24;71(24):9088-95
pubmed: 17109534
ACS Cent Sci. 2021 Mar 24;7(3):432-444
pubmed: 33791426
Chem Commun (Camb). 2004 Feb 21;(4):353-9
pubmed: 14765207
Nat Chem. 2013 Jul;5(7):597-601
pubmed: 23787750
Angew Chem Int Ed Engl. 2017 Jan 2;56(1):116-121
pubmed: 27809384
Chem Soc Rev. 2022 Mar 21;51(6):2145-2170
pubmed: 35212320