Transcytosis of Galectin-3 in Mouse Intestine.
Enterocytes
Galectin-3
Intestine
Lactotransferrin
Mucus
Transcytosis
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
23
3
2022
pubmed:
24
3
2022
medline:
26
3
2022
Statut:
ppublish
Résumé
The GlycoLipid-Lectin (GL-Lect) hypothesis provides a conceptual framework to explain how endocytic pits are built in processes of clathrin-independent endocytosis. According to this hypothesis, oligomeric cellular or pathogenic lectins interact with glycosylated plasma membrane lipids in a way such as to drive the formation of tubular endocytic pits that then detach to generate clathrin-independent endocytic carriers for the cellular uptake of cellular or pathogenic products. This process operates in a complementary manner to the conventional clathrin pathway for biological function linked to cell polarity. Up to date, the premises of the GL-Lect hypothesis have been based on model membrane and cell culture experiments. It has therefore become urgent to extend its exploration to complex organisms. In the current protocol, we describe methods to study the endocytosis and transcytosis of a key driver of the GL-Lect mechanism, the cellular galectin-3, and of one of its cargoes, lactotransferrin, in enterocytes of the intact jejunum of mice. In a step-by-step manner, we present the generation of fluorescent endocytic ligands, tissue preparation for cellular uptake measurements, binding and internalization assays, tissue fixation and preparation for sectioning, light and electron microscopical observations, and quantification of data by image processing. Pitfalls are discussed to optimize the chances of success with the described methods.
Identifiants
pubmed: 35320536
doi: 10.1007/978-1-0716-2055-7_20
doi:
Substances chimiques
Clathrin
0
Galectin 3
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
367-390Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Honig E, Ringer K, Dewes J, von Mach T, Kamm N, Kreitzer G, Jacob R (2018) Galectin-3 modulates the polarized surface delivery of beta1-integrin in epithelial cells. J Cell Sci 131(11):jcs213199. https://doi.org/10.1242/jcs.213199
doi: 10.1242/jcs.213199
pubmed: 29748377
Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269(33):20807–20810
doi: 10.1016/S0021-9258(17)31891-4
Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA (2011) When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50(37):7842–7857. https://doi.org/10.1021/bi201121m
doi: 10.1021/bi201121m
pubmed: 21848324
Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254. https://doi.org/10.1016/s0304-4165(02)00311-2
doi: 10.1016/s0304-4165(02)00311-2
pubmed: 12223272
Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572(2–3):263–273. https://doi.org/10.1016/s0304-4165(02)00313-6
doi: 10.1016/s0304-4165(02)00313-6
pubmed: 12223274
Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5(1):29–41. https://doi.org/10.1038/nrc1527
doi: 10.1038/nrc1527
pubmed: 15630413
Ochieng J, Platt D, Tait L, Hogan V, Raz T, Carmi P, Raz A (1993) Structure-function relationship of a recombinant human galactoside-binding protein. Biochemistry 32(16):4455–4460. https://doi.org/10.1021/bi00067a038
doi: 10.1021/bi00067a038
pubmed: 8476870
Rabinovich GA, Gruppi A (2005) Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease. Parasite Immunol 27(4):103–114. https://doi.org/10.1111/j.1365-3024.2005.00749.x
doi: 10.1111/j.1365-3024.2005.00749.x
pubmed: 15910418
Yang RY, Liu FT (2003) Galectins in cell growth and apoptosis. Cell Mol Life Sci 60(2):267–276. https://doi.org/10.1007/s000180300022
doi: 10.1007/s000180300022
pubmed: 12678492
Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, Brewer CF (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279(12):10841–10847. https://doi.org/10.1074/jbc.M312834200
doi: 10.1074/jbc.M312834200
pubmed: 14672941
Halimi H, Rigato A, Byrne D, Ferracci G, Sebban-Kreuzer C, ElAntak L, Guerlesquin F (2014) Glycan dependence of Galectin-3 self-association properties. PLoS One 9(11):e111836. https://doi.org/10.1371/journal.pone.0111836
doi: 10.1371/journal.pone.0111836
pubmed: 25369125
pmcid: 4219786
Nieminen J, Kuno A, Hirabayashi J, Sato S (2007) Visualization of galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer. J Biol Chem 282(2):1374–1383. https://doi.org/10.1074/jbc.M604506200
doi: 10.1074/jbc.M604506200
pubmed: 17082191
Rabinovich GA, Toscano MA, Jackson SS, Vasta GR (2007) Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 17(5):513–520. https://doi.org/10.1016/j.sbi.2007.09.002
doi: 10.1016/j.sbi.2007.09.002
pubmed: 17950594
pmcid: 2100406
Boscher C, Dennis JW, Nabi IR (2011) Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 23(4):383–392. https://doi.org/10.1016/j.ceb.2011.05.001
doi: 10.1016/j.ceb.2011.05.001
pubmed: 21616652
Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12(5):616–623. https://doi.org/10.1016/s0959-440x(02)00364-0
doi: 10.1016/s0959-440x(02)00364-0
pubmed: 12464313
Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693):120–124. https://doi.org/10.1126/science.1102109
doi: 10.1126/science.1102109
pubmed: 15459394
Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134. https://doi.org/10.1016/j.cell.2007.01.049
doi: 10.1016/j.cell.2007.01.049
pubmed: 17418791
Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D (2007) The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell 27(6):992–1004. https://doi.org/10.1016/j.molcel.2007.07.031
doi: 10.1016/j.molcel.2007.07.031
pubmed: 17889671
pmcid: 4217170
Markowska AI, Jefferies KC, Panjwani N (2011) Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem 286(34):29913–29921. https://doi.org/10.1074/jbc.M111.226423
doi: 10.1074/jbc.M111.226423
pubmed: 21715322
pmcid: 3191032
Mathew MP, Donaldson JG (2018) Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis. J Biol Chem 293(19):7222–7237. https://doi.org/10.1074/jbc.RA118.001802
doi: 10.1074/jbc.RA118.001802
pubmed: 29581232
pmcid: 5949984
Furtak V, Hatcher F, Ochieng J (2001) Galectin-3 mediates the endocytosis of beta-1 integrins by breast carcinoma cells. Biochem Biophys Res Commun 289(4):845–850. https://doi.org/10.1006/bbrc.2001.6064
doi: 10.1006/bbrc.2001.6064
pubmed: 11735123
Johannes L (2017) Shiga toxin-A model for glycolipid-dependent and lectin-driven endocytosis. Toxins 9(11):340. https://doi.org/10.3390/toxins9110340
doi: 10.3390/toxins9110340
pmcid: 5705955
Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C, Arumugam S, Sales S, Ariotti N, Chambon V, Lamaze C, Loew D, Shevchenko A, Gaus K, Parton RG, Johannes L (2014) Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol 16(6):595–606. https://doi.org/10.1038/ncb2970
doi: 10.1038/ncb2970
pubmed: 24837829
Johannes L, Wunder C, Shafaq-Zadah M (2016) Glycolipids and lectins in endocytic uptake processes. J Mol Biol S0022-2836(16):30453–30453. https://doi.org/10.1016/j.jmb.2016.10.027
doi: 10.1016/j.jmb.2016.10.027
HFT R, Tyckaert F, Lo Guidice C, Hirsch T, Velades Cruz CA, Lemaigre C, Shafaq-Zadah M, Wunder C, Wattiez R, Johannes L, van der Bruggen P, Alsteens D, Morsomme P (2021) Endophilin-A3 and galectin-8 control the clathrin -independent endocytosis of CD166. Nat Commun 11:1457
Nio J, Kon Y, Iwanaga T (2005) Differential cellular expression of galectin family mRNAs in the epithelial cells of the mouse digestive tract. J Histochem Cytochem 53(11):1323–1334. https://doi.org/10.1369/jhc.5A6685.2005
doi: 10.1369/jhc.5A6685.2005
pubmed: 15956024
Nio-Kobayashi J (2017) Tissue- and cell-specific localization of galectins, beta-galactose-binding animal lectins, and their potential functions in health and disease. Anat Sci Int 92(1):25–36. https://doi.org/10.1007/s12565-016-0366-6
doi: 10.1007/s12565-016-0366-6
pubmed: 27590897
Nio-Kobayashi J, Takahashi-Iwanaga H, Iwanaga T (2009) Immunohistochemical localization of six galectin subtypes in the mouse digestive tract. J Histochem Cytochem 57(1):41–50. https://doi.org/10.1369/jhc.2008.952317
doi: 10.1369/jhc.2008.952317
pubmed: 18796404
pmcid: 2605710
Magnaldo T, Fowlis D, Darmon M (1998) Galectin-7, a marker of all types of stratified epithelia. Differentiation 63(3):159–168. https://doi.org/10.1046/j.1432-0436.1998.6330159.x
doi: 10.1046/j.1432-0436.1998.6330159.x
pubmed: 9697310
Jacob R, Naim HY (2001) Apical membrane proteins are transported in distinct vesicular carriers. Curr Biol 11(18):1444–1450. https://doi.org/10.1016/s0960-9822(01)00446-8
doi: 10.1016/s0960-9822(01)00446-8
pubmed: 11566104
Kreitzer G, Schmoranzer J, Low SH, Li X, Gan Y, Weimbs T, Simon SM, Rodriguez-Boulan E (2003) Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat Cell Biol 5(2):126–136. https://doi.org/10.1038/ncb917
doi: 10.1038/ncb917
pubmed: 12545172
Mostov KE, Verges M, Altschuler Y (2000) Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol 12(4):483–490. https://doi.org/10.1016/s0955-0674(00)00120-4
doi: 10.1016/s0955-0674(00)00120-4
pubmed: 10873817
Luton F, Verges M, Vaerman JP, Sudol M, Mostov KE (1999) The SRC family protein tyrosine kinase p62yes controls polymeric IgA transcytosis in vivo. Mol Cell 4(4):627–632. https://doi.org/10.1016/s1097-2765(00)80213-0
doi: 10.1016/s1097-2765(00)80213-0
pubmed: 10549294
Rojas R, Apodaca G (2002) Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3(12):944–955. https://doi.org/10.1038/nrm972
doi: 10.1038/nrm972
pubmed: 12461560
Verges M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR, Mostov KE (2004) The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 6(8):763–769. https://doi.org/10.1038/ncb1153
doi: 10.1038/ncb1153
pubmed: 15247922
Bartles JR, Feracci HM, Stieger B, Hubbard AL (1987) Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J Cell Biol 105(3):1241–1251. https://doi.org/10.1083/jcb.105.3.1241
doi: 10.1083/jcb.105.3.1241
pubmed: 3654750
Ait-Slimane T, Galmes R, Trugnan G, Maurice M (2009) Basolateral internalization of GPI-anchored proteins occurs via a clathrin-independent flotillin-dependent pathway in polarized hepatic cells. Mol Biol Cell 20(17):3792–3800. https://doi.org/10.1091/mbc.E09-04-0275
doi: 10.1091/mbc.E09-04-0275
pubmed: 19605558
pmcid: 2735478
Polishchuk R, Di Pentima A, Lippincott-Schwartz J (2004) Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat Cell Biol 6(4):297–307. https://doi.org/10.1038/ncb1109
doi: 10.1038/ncb1109
pubmed: 15048124
Monhasery N, Moll J, Cuman C, Franke M, Lamertz L, Nitz R, Gorg B, Haussinger D, Lokau J, Floss DM, Piekorz R, Dimitriadis E, Garbers C, Scheller J (2016) Transcytosis of IL-11 and apical redirection of gp130 is mediated by IL-11alpha receptor. Cell Rep 16(4):1067–1081. https://doi.org/10.1016/j.celrep.2016.06.062
doi: 10.1016/j.celrep.2016.06.062
pubmed: 27425614
Zhou K, Sumigray KD, Lechler T (2015) The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Mol Biol Cell 26(11):1995–2004. https://doi.org/10.1091/mbc.E14-10-1481
doi: 10.1091/mbc.E14-10-1481
pubmed: 25833710
pmcid: 4472011
Lynes M, Narisawa S, Millan JL, Widmaier EP (2011) Interactions between CD36 and global intestinal alkaline phosphatase in mouse small intestine and effects of high-fat diet. Am J Physiol Regul Integr Comp Physiol 301(6):R1738–R1747. https://doi.org/10.1152/ajpregu.00235.2011
doi: 10.1152/ajpregu.00235.2011
pubmed: 21900644
pmcid: 3233846
Pepino MY, Kuda O, Samovski D, Abumrad NA (2014) Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr 34:281–303. https://doi.org/10.1146/annurev-nutr-071812-161220
doi: 10.1146/annurev-nutr-071812-161220
pubmed: 24850384
pmcid: 4329921
Cammisotto PG, Levy E, Bukowiecki LJ, Bendayan M (2010) Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism. Prog Histochem Cytochem 45(3):143–200. https://doi.org/10.1016/j.proghi.2010.06.001
doi: 10.1016/j.proghi.2010.06.001
pubmed: 20621336
Bian F, Cui J, Zheng T, Jin S (2017) Reactive oxygen species mediate angiotensin II-induced transcytosis of low-density lipoprotein across endothelial cells. Int J Mol Med 39(3):629–635. https://doi.org/10.3892/ijmm.2017.2887
doi: 10.3892/ijmm.2017.2887
pubmed: 28204818
pmcid: 5360350
Molino Y, David M, Varini K, Jabes F, Gaudin N, Fortoul A, Bakloul K, Masse M, Bernard A, Drobecq L, Lecorche P, Temsamani J, Jacquot G, Khrestchatisky M (2017) Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J 31(5):1807–1827. https://doi.org/10.1096/fj.201600827R
doi: 10.1096/fj.201600827R
pubmed: 28108572
Lim JS, Na HS, Lee HC, Choy HE, Park SC, Han JM, Cho KA (2009) Caveolae-mediated entry of Salmonella typhimurium in a human M-cell model. Biochem Biophys Res Commun 390(4):1322–1327. https://doi.org/10.1016/j.bbrc.2009.10.145
doi: 10.1016/j.bbrc.2009.10.145
pubmed: 19879241
Lukyanenko V, Malyukova I, Hubbard A, Delannoy M, Boedeker E, Zhu C, Cebotaru L, Kovbasnjuk O (2011) Enterohemorrhagic Escherichia coli infection stimulates Shiga toxin 1 macropinocytosis and transcytosis across intestinal epithelial cells. Am J Physiol Cell Physiol 301(5):C1140–C1149. https://doi.org/10.1152/ajpcell.00036.2011
doi: 10.1152/ajpcell.00036.2011
pubmed: 21832249
pmcid: 3213915
Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M (2011) Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med 208(11):2263–2277. https://doi.org/10.1084/jem.20110560
doi: 10.1084/jem.20110560
pubmed: 21967767
pmcid: 3201198
Ivashenka A, Wunder C, Chambon V, Sandhoff R, Jennemann R, Estelle D, Podsypanina K, Lombard B, Loew D, Lamaze C, Poirier F, Gröne HJ, Johannes L, Shafaq Zadah M (2021) Glycolipid-dependent and lectin-driven transcytosis in mouse enterocytes. Commun Biol 4:173
doi: 10.1038/s42003-021-01693-2
Ravn V, Dabelsteen E (2000) Tissue distribution of histo-blood group antigens. APMIS 108(1):1–28. https://doi.org/10.1034/j.1600-0463.2000.d01-1.x
doi: 10.1034/j.1600-0463.2000.d01-1.x
pubmed: 10698081
Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 15(1):57–62. https://doi.org/10.1016/j.mib.2011.11.002
doi: 10.1016/j.mib.2011.11.002
pubmed: 22177113