Detection of Reactive Oxygen Species in Human Neutrophils Under Various Conditions of Exposure to Galectin.
Galectin
Lucigenin
Luminol
Neutrophil
ROS
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
23
3
2022
pubmed:
24
3
2022
medline:
26
3
2022
Statut:
ppublish
Résumé
Reactive oxygen species (ROS) have been extensively studied in biology in the past years. This class of molecules can be derived from endogenous sources (e.g., phagocytic cells as neutrophils, eosinophils, monocytes, macrophages, and organelles as mitochondria and peroxisomes) and participate in physiological and pathological conditions. The beneficial and harmful effects of ROS depend on redox regulation, which establishes the balance between their production and the activity of antioxidant systems to prevent oxidative stress in vivo. Neutrophils are the immune effectors most well depicted with an intense oxidative burst in response to tissue inflammation. Several proteins and members of the galectin family are involved in this fine modulation of ROS production by neutrophils. Interestingly, studies have indicated that Galectin-1 (Gal-1) can up- or downregulate ROS production by neutrophils even when exposed to N-formyl-Met-Leu-Phe (fMLP) or Phorbol Myristate Acetate (PMA), both of which are potent neutrophil stimulants that trigger high levels of ROS production. Similarly, Galectin-3 (Gal-3) induces ROS in neutrophils from a sterile or nonsterile inflammatory environment, possibly creating a negative loop that could control ROS production. Besides, superoxide production is also induced by Galectin-8 (Gal-8) and Galectin-9 (Gal-9) in neutrophils but in a different manner. We describe herein the luminol and lucigenin-dependent chemiluminescence technique by using a luminometer as a method of assessment to measure ROS production by human neutrophils isolated and exposed to purified human recombinant Gal-1. The protocol described herein could be applied for the investigation of the role of other galectins in the modulation of ROS production by neutrophils.
Identifiants
pubmed: 35320545
doi: 10.1007/978-1-0716-2055-7_29
doi:
Substances chimiques
Galectins
0
Reactive Oxygen Species
0
Tetradecanoylphorbol Acetate
NI40JAQ945
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
549-564Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383. https://doi.org/10.1038/s41580-020-0230-3
doi: 10.1038/s41580-020-0230-3
pubmed: 32231263
Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26. https://doi.org/10.1007/s12291-014-0446-0
doi: 10.1007/s12291-014-0446-0
pubmed: 25646037
Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31:509–515. https://doi.org/10.1016/j.tibs.2006.07.005
doi: 10.1016/j.tibs.2006.07.005
pubmed: 16890439
Reilly PM, Schiller HJ, Bulkley GB (1991) Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am J Surg 161(4):488–503. https://doi.org/10.1016/0002-9610(91)91120-8
doi: 10.1016/0002-9610(91)91120-8
pubmed: 2035771
Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15(1):71. https://doi.org/10.1186/s12937-016-0186-5
doi: 10.1186/s12937-016-0186-5
pubmed: 4960740
pmcid: 4960740
Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001
doi: 10.1016/j.biocel.2006.07.001
pubmed: 16978905
pmcid: 16978905
Nordberg J, Arnér ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31(11):1287–1312. https://doi.org/10.1016/s0891-5849(01)00724-9
doi: 10.1016/s0891-5849(01)00724-9
pubmed: 11728801
Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21(3):361–370. https://doi.org/10.1093/carcin/21.3.361
doi: 10.1093/carcin/21.3.361
pubmed: 10688856
Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x
doi: 10.1111/j.1749-6632.2000.tb06187.x
pubmed: 10863540
Ylä-Herttuala S (1999) Oxidized LDL and atherogenesis. Ann N Y Acad Sci 874:134–137. https://doi.org/10.1111/j.1749-6632.1999.tb09231.x
doi: 10.1111/j.1749-6632.1999.tb09231.x
pubmed: 10415527
Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744. https://doi.org/10.1172/JCI107236
doi: 10.1172/JCI107236
pubmed: 4346473
pmcid: 302313
Bravenboer B, Kappelle AC, Hamers FPT et al (1992) Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. Diabetologia 35(9):813–817. https://doi.org/10.1007/BF00399926
doi: 10.1007/BF00399926
pubmed: 1397775
Cameron NE, Cotter MA, Maxfield EK (1993) Anti-oxidant treatment prevents the development of peripheral nerve dysfunction in streptozotocin-diabetic rats. Diabetologia 36(4):299–304. https://doi.org/10.1007/BF00400231
doi: 10.1007/BF00400231
pubmed: 8477873
Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175. https://doi.org/10.1038/nri3399
doi: 10.1038/nri3399
pubmed: 23435331
Robinson BS, Arthur CM, Evavold B et al (2019) The sweet-side of leukocytes: galectins as master regulators of neutrophil function. Front Immunol 10:1762. https://doi.org/10.3389/fimmu.2019.01762
doi: 10.3389/fimmu.2019.01762
pubmed: 31440233
pmcid: 6693361
Barondes SH, Castronovo V, Cooper DNW et al (1994) Galectins: a family of animal β-galactoside-binding lectins. Cell 76(4):597–598. https://doi.org/10.1016/0092-8674(94)90498-7
doi: 10.1016/0092-8674(94)90498-7
pubmed: 8124704
Cooper D, Iqbal AJ, Gittens BR et al (2012) The effect of galectins on leukocyte trafficking in inflammation: sweet or sour? Ann N Y Acad Sci 1253:181–192. https://doi.org/10.1111/j.1749-6632.2011.06291.x
doi: 10.1111/j.1749-6632.2011.06291.x
pubmed: 22256855
Thiemann S, Baum LG (2016) Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol 34:243–264. https://doi.org/10.1146/annurev-immunol-041015-055402
doi: 10.1146/annurev-immunol-041015-055402
pubmed: 26907217
Rodrigues LC, Kabeya LM, Azzolini AECS et al (2019) Galectin-1 modulation of neutrophil reactive oxygen species production depends on the cell activation state. Mol Immunol 116:80–89. https://doi.org/10.1016/j.molimm.2019
doi: 10.1016/j.molimm.2019
pubmed: 31630079
Feuk-Lagerstedt E, Jordan ET, Leffler H et al (1999) Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J Immunol 163(10):5592–5598
pubmed: 10553088
Alves CMOS, Silva DAO, Azzolini AECS et al (2013) Galectin-3 is essential for reactive oxygen species production by peritoneal neutrophils from mice infected with a virulent strain of toxoplasma gondii. Parasitology 140(2):210–219. https://doi.org/10.1017/S0031182012001473
doi: 10.1017/S0031182012001473
pubmed: 22975147
El-Benna J, Dang PM, Gougerot-Pocidalo MA, Elbim C (2005) Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 53(3):199–206
Almkvist J, Dahlgren C, Leffler H, Karlsson A (2002) Activation of the neutrophil nicotinamide adenine dinucleotide phosphate oxidase by galectin-1. J Immunol 168(8):4034–4041. https://doi.org/10.4049/jimmunol.168.8.4034
doi: 10.4049/jimmunol.168.8.4034
pubmed: 11937561
Elola T, Chiesa E, Fink NE (2005) Activation of oxidative burst and degranulation of porcine neutrophils by a homologous spleen galectin-1 compared to N -formyl- l -methionyl- l -leucyl- l -phenylalanine and phorbol 12-myristate 13-acetate. Comp Biochem Physiol B Biochem Mol Biol 141(1):23–31. https://doi.org/10.1016/j.cbpc.2005.01.004
doi: 10.1016/j.cbpc.2005.01.004
pubmed: 15820131
Forsman H, Salomonsson E, Önnheim K et al (2008) The β-galactoside binding immunomodulatory lectin galectin-3 reverses the desensitized state induced in neutrophils by the chemotactic peptide f-met-Leu-Phe: role of reactive oxygen species generated by the NADPH-oxidase and inactivation of the agonist. Glycobiology 18(11):905–912. https://doi.org/10.1093/glycob/cwn081
doi: 10.1093/glycob/cwn081
pubmed: 18725453
Sato S, Nieminen J (2002) Seeing strangers or announcing “danger”: Galectin-3 in two models of innate immunity. Glycoconj J 19(7–9):583–591. https://doi.org/10.1023/B:GLYC.0000014089.17121.cc
doi: 10.1023/B:GLYC.0000014089.17121.cc
pubmed: 14758083
Carlsson S, Öberg CT, Carlsson MC et al (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. https://doi.org/10.1093/glycob/cwm026
doi: 10.1093/glycob/cwm026
pubmed: 17339281
Nishi N, Shoji H, Seki M et al (2003) Galectin-8 modulates neutrophil function via interaction with integrin αM. Glycobiology 13(11):755–763. https://doi.org/10.1093/glycob/cwg102
doi: 10.1093/glycob/cwg102
pubmed: 12881409
Vega-Carrascal I, Bergin DA, McElvaney OJ et al (2014) Galectin-9 signaling through TIM-3 is involved in neutrophil-mediated gram-negative bacterial killing: an effect abrogated within the cystic fibrosis lung. J Immunol 192(5):2418–2431. https://doi.org/10.4049/jimmunol.1300711
doi: 10.4049/jimmunol.1300711
pubmed: 24477913
Dahlgren C, Stendahl O (1983) Role of myeloperoxidase in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun 39(2):736–741. https://doi.org/10.1128/IAI.39.2.736-741
doi: 10.1128/IAI.39.2.736-741
pubmed: 6299947
pmcid: 348011
Pavelkova M, Kubala L (2004) Luminol-, isoluminol- and lucigenin-enhanced chemiluminescence of rat blood phagocytes stimulated with different activators. Luminescence 19(1):37–42. https://doi.org/10.1002/bio.754
doi: 10.1002/bio.754
pubmed: 14981645
Dias-Baruffi M, Zhu H, Cho M, Karmakar S, McEver RP, Cummings RD (2003) Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J Biol Chem 278(42):41282–41293. https://doi.org/10.1074/jbc.M306624200
doi: 10.1074/jbc.M306624200
pubmed: 12853445
Stowell SR, Cho M, Feasley CL et al (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999. https://doi.org/10.1074/jbc.M80892520
doi: 10.1074/jbc.M80892520
pubmed: 19103599
pmcid: 2643495
Cooper DNW, Barondes SH (2000) Galectins. Carbohydr Chem Biol 2000:625–647. https://doi.org/10.1002/9783527618255.ch77
doi: 10.1002/9783527618255.ch77
Briheim G, Stendahl O, Dahlgren C (1984) Intra- and extracellular events in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun 45(1):1–5. https://doi.org/10.1128/IAI.45.1.1-5.1984
doi: 10.1128/IAI.45.1.1-5.1984
pubmed: 6329953
pmcid: 263244
Dahlgren C, Aniansson H, Magnusson KE (1985) Pattern of formylmethionyl-leucyl-phenylalanine-induced luminol- and lucigenin-dependent chemiluminescence in human neutrophils. Infect Immun 47(1):326–328. https://doi.org/10.1128/IAI.47.1.326-328.1985
doi: 10.1128/IAI.47.1.326-328.1985
pubmed: 3965405
pmcid: 261517
Dahlgren C, Björnsdottir H, Sundqvist M, Christenson K, Bylund J (2020) Measurement of respiratory burst products, released or retained, during activation of professional phagocytes. Methods Mol Biol 2087:301–324. https://doi.org/10.1007/978-1-0716-0154-9_22
doi: 10.1007/978-1-0716-0154-9_22
pubmed: 31729000
Maghzal GJ, Krause KH, Stocker R, Jaquet V (2012) Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 53(10):1903–1918. https://doi.org/10.1016/j.freeradbiomed.2012.09.002
doi: 10.1016/j.freeradbiomed.2012.09.002
pubmed: 22982596