The using of the polymerase chain reaction for the detection of resistance genes in gram-negative bacteria in routine practice in a pediatric hospital.
Использование полимеразной цепной реакции для детекции генов резистентности у грамотрицательных бактерий в рутинной практике педиатрического стационара.
Acinetobacter baumannii
Klebsiella pneumoniae
Pseudomonas aeruginosa
carbapenemases
real-time PCR
Journal
Klinicheskaia laboratornaia diagnostika
ISSN: 0869-2084
Titre abrégé: Klin Lab Diagn
Pays: Russia (Federation)
ID NLM: 9432021
Informations de publication
Date de publication:
25 Mar 2022
25 Mar 2022
Historique:
entrez:
23
3
2022
pubmed:
24
3
2022
medline:
26
3
2022
Statut:
ppublish
Résumé
Objective - assessment of RT-PCR for the detection of carbapenem-resistance genes in gram-negative bacteria. A total, 499 strains of gram-negative microorganisms isolated in two pediatric hospitals in 2019-2020 were studied. Species identification was performed using MALDI-ToF mass-spectrometry (Bruker Daltonics, Germany). Meropenem and imipenem minimal inhibitory concentration (MIC) was determined by E-test method (BioMerieux, France). The presence of acquired carbapenemase genes of IMP, NDM, VIM, KPC, OXA-48, OXA-23, OXA-40, OXA-58-groups was determined by RT-PCR. Klebsiella pneumoniae (34%), Escherichia coli (4%), Serratia marcescens (6%) and other members of Enterobacterales (6%), also gram-negative non-glucose-fermenting bacteria Acinetobacter baumannii (14%), Pseudomonas aeruginosa (36%) were found among selected strains. Carbapenemase production was found in 385 isolates (77%). The main mechanism determining carbapenem resistance in P. aeruginosa was the production of blaVIM (100%). A. baumanii strains harbored OXA-23 (55%) and OXA-40 (45%) carbapenemases. The major determinant of carbapenem resistance in K. pneumoniae isolates was OXA-48 carbapenemase, detected in 63% strains, 13% of the strains possessed blaNDM-group, 16% isolates had a combination of blaNDM-group and blaOXA-48-like. Carbapenemase of KPC-group was found in 8% K. pneumoniae strains. OXA-48 carbapenemase prevailed (95%) among S. marcescens strains. Most of E. coli isolates harbored metallo-beta-lactamase NDM (89%). Other members of Enterobacterales most often had OXA-48 carbapenemase (57%), 39% of the isolates carried blaNDM-group. In one strain, a combination of blaNDM-group and blaOXA-48-like was discovered. RT-PCR is a fast and reliable method for the detection of acquired carbapenemases and can be recommended for routine use in bacteriological laboratories.
Identifiants
pubmed: 35320635
doi: 10.51620/0869-2084-2022-67-3-180-185
doi:
Substances chimiques
Carbapenems
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
180-185Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Sukhorukova M.V., Edelstein M.V., Skleenova E.Yu., Ivanchik N.V., Shek E.A., Dekhnich A.V. et al. Antimicrobial resistance of nosocomial Acinetobacter spp. isolates in Russia: results of multicenter epidemiological study «MARATHON» 2013-2014. Klinicheskaya mikrobiologiya i antimikrobnaya khimiotherapiya. 2017; 19(1): 42-8. (in Russian)
Sukhorukova M.V., Edelstein M.V., Skleenova E.Yu., Ivanchik N.V., Mikotina A.V., Dekhnich A.V. et al. Antimicrobial resistance of nosocomial Enterobacteriaceae isolates in Russia: results of multicenter epidemiological study «MARATHON» 2013-2014. Klinicheskaya mikrobiologiya i antimikrobnaya khimiotherapiya. 2017; 19(1): 49-56. (in Russian)
Edelstein M.V., Sukhorukova M.V., Skleenova E.Yu., Ivanchik N.V., Mikotina A.V., Sheck E.A. et al. Antimicrobial resistance of nosocomial Pseudomonas aeruginosa isolates in Russia: results of multicenter epidemiological study «MARATHON» 2013-2014. Klinicheskaya mikrobiologiya i antimikrobnaya khimiotherapiya. 2017; 19(1): 37-41. (in Russian)
Medvedeva E.D., Kezko J.L., Ismatullin D.D., Lyamin A.V., Kondratenko O.V., Zhestkov A.V. Structure of microorganisms isolated from bronhoalveolar lavage from patients in the department of reanimation and intensive therapy. Klinicheskaya Laboratornaya Diagnostika. 2020; 65(7): 454-7. https://doi.org/10.18821/0869-2084-2020-65-7-454-457 (in Russian)
Ageevets V.A, Partina I.V, Lisitsyna E.S, Ilina E.N, Lobzin Y.V, Shlyapnikov S.A, Sidorenko S.V. Emergence of carbapenemase-producing Gram-negative bacteria in Saint Petersburg, Russia. Int. J. Antimicrob. Agents. 2014; 44(2): 152-5. https://doi.org/10.1016/j.ijantimicag.2014.05.004
Sukhorukova M.V., Edelstein M.V., Ivanchik N.V., Skleenova E.Yu., Shajdullina E.R., Shek E.A et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study «MARATHON 2015–2016». Klinicheskaya mikrobiologiya i antimikrobnaya khimiotherapiya. 2019; 21(2): 147-59. https://doi.org/10.36488/cmac.2019.2.147-159 (in Russian)
Shek E.A., Sukhorukova M.V., Edelstein M.V., Skleenova E.Yu., Ivanchik N.V., Shajdullina E.R. et al. Antimicrobial resistance, carbapenemase production, and genotypes of nosocomial Pseudomonas aeruginosa isolates in Russia: results of multicenter epidemiological study «MARATHON 2015-2016». Klinicheskaya mikrobiologiya i antimikrobnaya khimiotherapiya. 2019; 21(2): 160-70. https://doi.org/10.36488/cmac.2019.2.160-170 (in Russian)
Shek E.A., Sukhorukova M.V., Edelstein M.V., Skleenova E.Yu., Ivanchik N.V., Shajdullina E.R. et al. Antimicrobial resistance, carbapenemase production, and genotypes of nosocomial Acinetobacter spp. isolates in Russia: results of multicenter epidemiological study «MARATHON 2015-2016». Klinicheskaya mikrobiologiya i antimikrobnaya khimiotherapiya. 2019; 21(2): 171-80. https://doi.org/10.36488/cmac.2019.2.171-180 (in Russian)
Pryamchuk S.D., Fursova N.K., Abaev I.V., Kovalev Yu.N., Shishkova N.A., Pecherskikh E.I. et al. Genetic determinants of antibacterial resistance among nosocomial Escherichia coli, Klebsiella spp., and Enterobacter spp. isolates collected in Russia within 2003-2007. Antibiotiki i khimioterapiya. 2010; 55(9-10): 3-10. (in Russian)
Edelstein M., Pimkin I., Palagin I., Edelstein I., Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother. 2003; 47(12): 3724-32. https://doi.org/10.1128/aac.47.12.3724-3732.2003
Pfeifer Y., Cullik A., Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol. 2010; 300(6): 371-9. https://doi.org/10.1016/j.ijmm.2010.04.005
Zverev V.V., Boychenko M.N. Medical microbiology, virology and immunology. [Meditsinskaya mikrobiologiya, virusologiya i immunologiya]. Moscow: GEOTAR-Media; 2016. (in Russian)
Potron A., Poirel L., Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int. J. Antimicrob. Agents. 2015; 45(6): 568-85. https://doi.org/10.1016/j.ijantimicag.2015.03.001
Tapal’skiy D.V., Osipov V.A., Zhavoronok S.V. Carbapenemases of gram-negative bacteria: spread and detection methods. Meditsinskiy zhurnal. 2012. (2): 10-5. (in Russian)
Alekseeva A.E., Brusnigina N.F., Solntsev L.A., Gordinskaya N.A. The molecular typing of clinical isolates Klebsiella pneumoniae producing beta-lactamases of extended specter of action. Klinicheskaya Laboratornaya Diagnostika. 2017; 62(11): 699-704. https://doi.org/10.18821/0869-2084-2017-62-11-699-704 (in Russian)
Hsu A.J. Tamma P.D. Treatment of multidrug-resistant Gram-negative infections in children. Clinical Infectious Diseases. 2014; 58(10): 1439-48. https://doi.org/10.1093/cid/ciu069
Kehl S.C., Dowzicky M.J. Global assessment of antimicrobial susceptibility among Gram-negative organisms collected from pediatric patients between 2004 and 2012: results from the tigecycline evaluation and surveillance trial. The Journal of Clinical Microbiology. 2015; 53(4): 1286-93. https://doi.org/10.1128/jcm.03184-14
Lukac P.J., Bonomo R.A., Logan L.K. Extended-spectrum-lactamase-producing Enterobacteriaceae in children: old foe, emerging threat. Clinical Infectious Diseases. 2015; 60(9): 1389-97. https://doi.org/10.1093/cid/civ020
Lazareva A.V., Katosova L.K., Kryzhanovskaya O.A., Ponomarenko O.A., Karaseva O.V., Gorelik A.L. et al. Monitoring and antibiotic resistance profile of tracheal aspirate microbiota in ICU children with severe craniocerebral trauma. Antibiotiki i khimioterapiya. 2014; 59(7-8): 8-15. (in Russian)
Hrabák J., Chudáčková E., Papagiannitsis C.C. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin. Microbiol. Infect. 2014; 20(9): 839-53. https://doi.org/10.1111/1469-0691.12678
Lopukhov L.V., Edelstein M.V. Polymerase chain reaction in diagnostic clinical microbiology. Klinicheskaya mikrobiologiya i antimikrobnaya khimiotherapiya. 2000; 2(3): 96-106. (in Russian)
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Ver. 9.0., 2019. Available at: http://www.eucast.org/clinical_breakpoints/ Accessed August 01, 2019.
Higgins P.G., Dammhayn C., Hackel M., Seifert H. Global spread of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2010; 65(2): 233-8. https://doi.org/10.1093/jac/dkp428
Donald H.M., Scaife W., Amyes S.G.B., Young H-K. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother. 2000; 44(1): 196-9. https://doi.org/10.1128/aac.44.1.196-199.2000
Dalla-Costa L.M., Coelho J.M., Souza H.A.P.H.M., Castro M.E.S., Stier C.J.N., Bragagnolo K.L. et al. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J. Clin. Microbiol. 2003; 41(7): 3403-6. https://doi.org/10.1128/jcm.41.7.3403-3406.2003
Turton J.F., Kaufmann M.E., Glover J., Coelho J.M., Warner M., Pike R. et al. Detection and typing of integrons in epidemic strains of Acinetobacter baumannii found in the United Kingdom. J. Clin. Microbiol. 2005; 43(7): 3074-82. https://doi.org/10.1128/jcm.43.7.3074-3082.2005
Jeon B.-C., Jeong S.H., Bae I.K., Kwon S.B., Lee K., Young D. et al. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. J. Clin. Microbiol. 2005; 43(5): 2241-5. https://doi.org/10.1128/jcm.43.5.2241-2245.2005
Valenzuela J.K, Thomas L., Partridge S.R., van der Reijden T., Dijkshoorn L., Iredell J. Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii. J. Clin. Microbiol. 2007; 45(2): 453-60. https://doi.org/10.1128/jcm.01971-06
Boo T.W., Walsh F., Crowley B. First report of OXA-23 carbapenemase in clinical isolates of Acinetobacter species in the Irish Republic. J. Antimicrob. Chemother. 2006; 58(5): 1101-2. https://doi.org/10.1093/jac/dkl345
Bou G., Santillana E., Sheri A., Beceiro A., Sampson J.M., Kalp M. et al. Design, synthesis, and crystal structures of 6-alkylidene-2′-substituted penicillanic acid sulfones as potent inhibitors of Acinetobacter baumannii OXA-24 carbapenemase. J. Am. Chem. Soc. 2010; 132(38): 13320-31. https://doi.org/10.1021/ja104092z
Kuo S.-C., Huang W.-C., Huang T.-W., Wang H.-Y., Lai J.-F., Lauderdale T.-L. Chen T.-L. Molecular epidemiology of emerging blaOXA-23-Like- and blaOXA-24-Like-carrying Acinetobacter baumannii in Taiwan. Antimicrob. Agents Chemother. 2018; 62(3): e01215-17. https://doi.org/10.1128/aac.01215-17
Quinteira S., Grosso F., Ramos H., Peixe L. Molecular epidemiology of imipenem-resistant Acinetobacter haemolyticus and Acinetobacter baumannii isolates carrying plasmid-mediated OXA-40 from a Portuguese Hospital. Antimicrob. Agents Chemother. 2007; 51(9): 3465-6. https://doi.org/10.1128/aac.00267-07
Lolans K., Rice T.W., Munoz-Price L.S., Quinn J.P. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob. Agents Chemother. 2006; 50(9): 2941-5. https://doi.org/10.1128/aac.00116-06
Kryzhanovskaya O.A., Lazareva A.V., Chebotar I.V., Bocharova Yu.A., Mayanskiy N.A. Spectrum of antibiotic resistance and prevalence of OXA-carbapenemases among Acinetobacter baumannii strains, isolated from patients of surgical and reanimation departments in Moscow. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2016; (1): 40-5. https://doi.org/10.36233/0372-9311-2016-1-40-45 (in Russian)
Khrul’nova S.A., Fedorova A.V., Frolova I.N., Klyasova G.A. Genotyping by random amplified polymorphic DNA assay of Acinetobacter baumannii isolated from blood culture of patients with hematological malignancies. Epidemiologiya i vaktsinoprofilaktika. 2020; 19(4): 38-47. https://doi.org/10.31631/2073-3046-2020-19-4-38-47 (in Russian)
Falagas M.E., Lourida P., Poulikakos P., Rafailidis P.I., Tansarli G.S. Antibiotic treatment of infections due tocarbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 2014; 58(2): 654-63. https://doi.org/10.1128/aac.01222-13
Shamina O.V., Samoylova E.A., Novikova I.E., Lazareva A.V. Klebsiella pneumoniae: microbiological characterization, antimicrobial resistance, and virulence. Rossiyskiy pediatricheskiy zhurnal. 2020; 23(3): 191-7. https://doi.org/10.18821/1560-9561-2020-23-3-191-197 (in Russian)
Yong D., Toleman M.A, Giske C.G., Cho H.S., Sundman K., Lee K. et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009; 53(12): 5046-54. https://doi.org/10.1128/AAC.00774-09
Khan A.U., Maryam L., Zarrilli R. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol. 2017; 17(1). https://doi.org/10.1186/s12866-017-1012-8
Wu W., Feng Y., Tang G., Qiao F., McNally A., Zong Z. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin. Microbiol. Rev. 2019; 32(2): e00115-18. https://doi.org/10.1128/CMR.00115-18
La Scola B. Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert. Rev. Mol. Diagn. 2011; 11(3): 287-98. https://doi.org/10.1586/erm.11.12