Deficiency of N-glycanase 1 perturbs neurogenesis and cerebral development modeled by human organoids.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
24 03 2022
Historique:
received: 25 08 2021
accepted: 25 02 2022
revised: 21 02 2022
entrez: 24 3 2022
pubmed: 25 3 2022
medline: 13 4 2022
Statut: epublish

Résumé

Mutations in N-glycanase 1 (NGLY1), which deglycosylates misfolded glycoproteins for degradation, can cause NGLY1 deficiency in patients and their abnormal fetal development in multiple organs, including microcephaly and other neurological disorders. Using cerebral organoids (COs) developed from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), we investigate how NGLY1 dysfunction disturbs early brain development. While NGLY1 loss had limited impact on the undifferentiated cells, COs developed from NGLY1-deficient hESCs showed defective formation of SATB2-positive upper-layer neurons, and attenuation of STAT3 and HES1 signaling critical for sustaining radial glia. Bulk and single-cell transcriptomic analysis revealed premature neuronal differentiation accompanied by downregulation of secreted and transcription factors, including TTR, IGFBP2, and ID4 in NGLY1-deficient COs. NGLY1 malfunction also dysregulated ID4 and enhanced neuronal differentiation in CO transplants developed in vivo. NGLY1-deficient CO cells were more vulnerable to multiple stressors; treating the deficient cells with recombinant TTR reduced their susceptibility to stress from proteasome inactivation, likely through LRP2-mediated activation of MAPK signaling. Expressing NGLY1 led to IGFBP2 and ID4 upregulation in CO cells developed from NGLY1-deficiency patient's hiPSCs. In addition, treatment with recombinant IGFBP2 enhanced ID4 expression, STAT3 signaling, and proliferation of NGLY1-deficient CO cells. Overall, our discoveries suggest that dysregulation of stress responses and neural precursor differentiation underlies the brain abnormalities observed in NGLY1-deficient individuals.

Identifiants

pubmed: 35322011
doi: 10.1038/s41419-022-04693-0
pii: 10.1038/s41419-022-04693-0
pmc: PMC8942998
doi:

Substances chimiques

Glycoproteins 0
Proteasome Endopeptidase Complex EC 3.4.25.1
NGLY1 protein, human EC 3.5.1.52
Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase EC 3.5.1.52

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

262

Subventions

Organisme : NIA NIH HHS
ID : T32 AG020494
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM121293
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Huang C, Harada Y, Hosomi A, Masahara-Negishi Y, Seino J, Fujihira H, et al. Endo-beta-N-acetylglucosaminidase forms N-GlcNAc protein aggregates during ER-associated degradation in Ngly1-defective cells. Proc Natl Acad Sci USA. 2015;112:1398–403.
pubmed: 25605922 pmcid: 4321286 doi: 10.1073/pnas.1414593112
Caglayan AO, Comu S, Baranoski JF, Parman Y, Kaymakcalan H, Akgumus GT, et al. NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy. Eur J Med Genet. 2015;58:39–43.
pubmed: 25220016 doi: 10.1016/j.ejmg.2014.08.008
Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, McDonald MT, et al. Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet. 2012;49:353–61.
pubmed: 22581936 doi: 10.1136/jmedgenet-2012-100819
Suzuki T. The cytoplasmic peptide:N-glycanase (Ngly1)-basic science encounters a human genetic disorder. J Biochem. 2015;157:23–34.
pubmed: 25398991 doi: 10.1093/jb/mvu068
Enns GM, Shashi V, Bainbridge M, Gambello MJ, Zahir FR, Bast T, et al. Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway. Genet Med. 2014;16:751–8.
pubmed: 24651605 pmcid: 4243708 doi: 10.1038/gim.2014.22
Lam C, Ferreira C, Krasnewich D, Toro C, Latham L, Zein WM, et al. Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet Med. 2017;19:160–8.
pubmed: 27388694 doi: 10.1038/gim.2016.75
Might M, Wilsey M. The shifting model in clinical diagnostics: how next-generation sequencing and families are altering the way rare diseases are discovered, studied, and treated. Genet Med. 2014;16:736–7.
pubmed: 24651604 doi: 10.1038/gim.2014.23
Kariminejad A, Shakiba M, Shams M, Namiranian P, Eghbali M, Talebi S, et al. NGLY1 deficiency: Novel variants and literature review. Eur J Med Genet. 2021;64:104146.
pubmed: 33497766 doi: 10.1016/j.ejmg.2021.104146
Asahina M, Fujinawa R, Nakamura S, Yokoyama K, Tozawa R, Suzuki T. Ngly1 -/- rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems. Hum Mol Genet. 2020;29:1635–47.
pubmed: 32259258 pmcid: 7322575 doi: 10.1093/hmg/ddaa059
Habibi-Babadi N, Su A, de Carvalho CE, Colavita A. The N-glycanase png-1 acts to limit axon branching during organ formation in Caenorhabditis elegans. J Neurosci. 2010;30:1766–76.
pubmed: 20130186 pmcid: 6634002 doi: 10.1523/JNEUROSCI.4962-08.2010
Rodriguez TP, Mast JD, Hartl T, Lee T, Sand P, Perlstein EO. Defects in the neuroendocrine axis contribute to global development delay in a Drosophila model of NGLY1 deficiency. G3. 2018;8:2193–204.
pubmed: 29735526 pmcid: 6027897 doi: 10.1534/g3.118.300578
Galeone A, Han SY, Huang C, Hosomi A, Suzuki T, Jafar-Nejad H. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1. eLife. 2017;6:e27612.
pubmed: 28826503 pmcid: 5599231 doi: 10.7554/eLife.27612
Owings KG, Lowry JB, Bi Y, Might M, Chow CY. Transcriptome and functional analysis in a Drosophila model of NGLY1 deficiency provides insight into therapeutic approaches. Hum Mol Genet. 2018;27:1055–66.
pubmed: 29346549 pmcid: 5886220 doi: 10.1093/hmg/ddy026
Tomlin FM, Gerling-Driessen UIM, Liu YC, Flynn RA, Vangala JR, Lentz CS, et al. Inhibition of NGLY1 inactivates the transcription factor Nrf1 and potentiates proteasome inhibitor cytotoxicity. ACS Cent Sci. 2017. https://doi.org/10.1021/acscentsci.1027b00224.
Yang K, Huang R, Fujihira H, Suzuki T, Yan N. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J Exp Med. 2018;215:2600–16.
pubmed: 30135079 pmcid: 6170171 doi: 10.1084/jem.20180783
Zolekar A, Lin VJT, Mishra NM, Ho YY, Hayatshahi HS, Parab A, et al. Stress and interferon signalling-mediated apoptosis contributes to pleiotropic anticancer responses induced by targeting NGLY1. Br J Cancer. 2018;119:1538–51.
pubmed: 30385822 pmcid: 6288164 doi: 10.1038/s41416-018-0265-9
Fujihira H, Masahara-Negishi Y, Tamura M, Huang C, Harada Y, Wakana S, et al. Lethality of mice bearing a knockout of the Ngly1-gene is partially rescued by the additional deletion of the Engase gene. PLoS Genet. 2017;13:e1006696.
pubmed: 28426790 pmcid: 5398483 doi: 10.1371/journal.pgen.1006696
Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Brauninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci USA. 2015;112:15672–7.
pubmed: 26644564 pmcid: 4697386 doi: 10.1073/pnas.1520760112
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell. 2017;20:435–49 e434.
pubmed: 28111201 pmcid: 5667944 doi: 10.1016/j.stem.2016.12.007
Dakic V, Minardi Nascimento J, Costa Sartore R, Maciel RM, de Araujo DB, Ribeiro S, et al. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Sci Rep. 2017;7:12863.
pubmed: 28993683 pmcid: 5634411 doi: 10.1038/s41598-017-12779-5
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.
pubmed: 23995685 doi: 10.1038/nature12517
Lee CT, Chen J, Kindberg AA, Bendriem RM, Spivak CE, Williams MP, et al. CYP3A5 mediates effects of cocaine on human neocorticogenesis: studies using an in vitro 3D self-organized hPSC model with a single cortex-like unit. Neuropsychopharmacology. 2017;42:774–84.
pubmed: 27534267 doi: 10.1038/npp.2016.156
Pasca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12:671–8.
pubmed: 26005811 pmcid: 4489980 doi: 10.1038/nmeth.3415
Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meyerson OS, Mostajo-Radji MA, et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell. 2019;176:743–56 e717.
pubmed: 30735633 pmcid: 6544371 doi: 10.1016/j.cell.2019.01.017
Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;570:523–7.
pubmed: 31168097 pmcid: 6906116 doi: 10.1038/s41586-019-1289-x
Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh BS, et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 2017;21:517–32.
pubmed: 29020636 pmcid: 5637483 doi: 10.1016/j.celrep.2017.09.047
Zhang W, Yang SL, Yang M, Herrlinger S, Shao Q, Collar JL, et al. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors. Nat Commun. 2019;10:2612.
pubmed: 31197141 pmcid: 6565620 doi: 10.1038/s41467-019-10497-2
Trujillo CA, Muotri AR. Brain organoids and the study of neurodevelopment. Trends Mol Med. 2018;24:982–90.
pubmed: 30377071 pmcid: 6289846 doi: 10.1016/j.molmed.2018.09.005
Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48–53.
pubmed: 28445462 pmcid: 5659341 doi: 10.1038/nature22047
Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchis-Calleja F, et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature. 2019;574:418–22.
pubmed: 31619793 doi: 10.1038/s41586-019-1654-9
Wang YC, Nakagawa M, Garitaonandia I, Slavin I, Altun G, Lacharite RM, et al. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Res. 2011;21:1551–63.
pubmed: 21894191 pmcid: 3364725 doi: 10.1038/cr.2011.148
Lin VJT, Hu J, Yan L-J, Zolekar A, Wang Y-C. Urine sample-derived cerebral organoids suitable for studying neurodevelopment and pharmacological responses. Front Cell Dev Biol. 2020;8:304.
pubmed: 32528947 pmcid: 7247822 doi: 10.3389/fcell.2020.00304
Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc. 2015;10:1709–27.
pubmed: 26448360 doi: 10.1038/nprot.2015.085
Muller FJ, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP, et al. A bioinformatic assay for pluripotency in human cells. Nat Methods. 2011;8:315–7.
pubmed: 21378979 pmcid: 3265323 doi: 10.1038/nmeth.1580
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Campbell K, Gotz M. Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci. 2002;25:235–8.
pubmed: 11972958 doi: 10.1016/S0166-2236(02)02156-2
Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–84.
pubmed: 19555289 pmcid: 3086722 doi: 10.1146/annurev.neuro.051508.135600
Malatesta P, Gotz M. Radial glia - from boring cables to stem cell stars. Development. 2013;140:483–6.
pubmed: 23293279 doi: 10.1242/dev.085852
Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem. 2001;276:30467–74.
pubmed: 11399758 doi: 10.1074/jbc.M102420200
Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, et al. Molecular identity of human outer radial glia during cortical development. Cell. 2015;163:55–67.
pubmed: 26406371 pmcid: 4583716 doi: 10.1016/j.cell.2015.09.004
Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife. 2016;5:e13374.
pubmed: 27282387 pmcid: 4963198 doi: 10.7554/eLife.13374
Khan S. IGFBP-2 signaling in the brain: from brain development to higher order brain functions. Front Endocrinol. 2019;10:822.
doi: 10.3389/fendo.2019.00822
Li T, Forbes ME, Fuller GN, Li J, Yang X, Zhang W. IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene. 2020;39:2243–57.
pubmed: 31925333 pmcid: 7347283 doi: 10.1038/s41388-020-1154-2
Shen F, Song C, Liu Y, Zhang J, Wei Song S. IGFBP2 promotes neural stem cell maintenance and proliferation differentially associated with glioblastoma subtypes. Brain Res. 2019;1704:174–86.
pubmed: 30347220 doi: 10.1016/j.brainres.2018.10.018
Bedford L, Walker R, Kondo T, van Cruchten I, King ER, Sablitzky F. Id4 is required for the correct timing of neural differentiation. Developmental Biol. 2005;280:386–95.
doi: 10.1016/j.ydbio.2005.02.001
Yun K, Mantani A, Garel S, Rubenstein J, Israel MA. Id4 regulates neural progenitor proliferation and differentiation in vivo. Development. 2004;131:5441–8.
pubmed: 15469968 doi: 10.1242/dev.01430
Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018;19:365–81.
pubmed: 29626215 pmcid: 6399518 doi: 10.1038/s41580-018-0001-6
Sandy Z, da Costa IC, Schmidt CK. More than meets the ISG15: emerging roles in the DNA damage response and beyond. Biomolecules. 2020;10:1557.
pmcid: 7698331 doi: 10.3390/biom10111557
Gomes JR, Nogueira RS, Vieira M, Santos SD, Ferraz-Nogueira JP, Relvas JB, et al. Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death Differ. 2016;23:1749–64.
pubmed: 27518433 pmcid: 5071567 doi: 10.1038/cdd.2016.64
Rauscher B, Mueller WF, Clauder-Munster S, Jakob P, Islam MS, Sun H, et al. Patient-derived gene and protein expression signatures of NGLY1 deficiency. J Biochem. 2021, https://doi.org/10.1093/jb/mvab131 .
Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 2011;8:59–71.
pubmed: 21211782 pmcid: 3018289 doi: 10.1016/j.stem.2010.11.028
Aldred AR, Brack CM, Schreiber G. The cerebral expression of plasma protein genes in different species. Comp Biochem Physiol B Biochem Mol Biol. 1995;111:1–15.
pubmed: 7749630 doi: 10.1016/0305-0491(94)00229-N
Oliveira SM, Cardoso I, Saraiva MJ. Transthyretin: roles in the nervous system beyond thyroxine and retinol transport. Expert Rev Endocrinol Metab. 2012;7:181–9.
pubmed: 30764010 doi: 10.1586/eem.12.2
Santos SD, Lambertsen KL, Clausen BH, Akinc A, Alvarez R, Finsen B, et al. CSF transthyretin neuroprotection in a mouse model of brain ischemia. J Neurochem. 2010;115:1434–44.
pubmed: 21044072 doi: 10.1111/j.1471-4159.2010.07047.x
Buxbaum JN, Ye Z, Reixach N, Friske L, Levy C, Das P, et al. Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Abeta toxicity. Proc Natl Acad Sci USA. 2008;105:2681–6.
pubmed: 18272491 pmcid: 2268196 doi: 10.1073/pnas.0712197105
Silva CS, Eira J, Ribeiro CA, Oliveira A, Sousa MM, Cardoso I, et al. Transthyretin neuroprotection in Alzheimer’s disease is dependent on proteolysis. Neurobiol Aging. 2017;59:10–14.
pubmed: 28780366 doi: 10.1016/j.neurobiolaging.2017.07.002
Stein TD, Johnson JA. Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci. 2002;22:7380–8.
pubmed: 12196559 pmcid: 6758007 doi: 10.1523/JNEUROSCI.22-17-07380.2002
Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci. 2004;24:7707–17.
pubmed: 15342738 pmcid: 6729623 doi: 10.1523/JNEUROSCI.2211-04.2004
Monk JA, Sims NA, Dziegielewska KM, Weiss RE, Ramsay RG, Richardson SJ. Delayed development of specific thyroid hormone-regulated events in transthyretin null mice. Am J Physiol Endocrinol Metab. 2013;304:E23–31.
pubmed: 23092911 doi: 10.1152/ajpendo.00216.2012
Khan S, Lu X, Huang Q, Tang J, Weng J, Yang Z, et al. IGFBP2 plays an essential role in cognitive development during early life. Adv Sci. 2019;6:1901152.
doi: 10.1002/advs.201901152
Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24:584–94.
pubmed: 33723434 pmcid: 8012207 doi: 10.1038/s41593-020-00794-1
Jen Y, Manova K, Benezra R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dyn. 1996;207:235–52.
pubmed: 8922523 doi: 10.1002/(SICI)1097-0177(199611)207:3<235::AID-AJA1>3.0.CO;2-I
Jen Y, Manova K, Benezra R. Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev Dyn. 1997;208:92–106.
pubmed: 8989524 doi: 10.1002/(SICI)1097-0177(199701)208:1<92::AID-AJA9>3.0.CO;2-X
Chua CY, Liu Y, Granberg KJ, Hu L, Haapasalo H, Annala MJ, et al. IGFBP2 potentiates nuclear EGFR-STAT3 signaling. Oncogene. 2016;35:738–47.
pubmed: 25893308 doi: 10.1038/onc.2015.131
Han S, Li Z, Master LM, Master ZW, Wu A. Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin beta1-ERK pathway. Br J Cancer. 2014;111:1400–9.
pubmed: 25093489 pmcid: 4183856 doi: 10.1038/bjc.2014.435
Galeone A, Adams JM, Matsuda S, Presa MF, Pandey A, Han SY, et al. Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation. eLife. 2020;9:e55596.
pubmed: 32720893 pmcid: 7394544 doi: 10.7554/eLife.55596
Samanta J, Kessler JA. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development. 2004;131:4131–42.
pubmed: 15280210 doi: 10.1242/dev.01273
Zhang K, Li L, Huang C, Shen C, Tan F, Xia C, et al. Distinct functions of BMP4 during different stages of mouse ES cell neural commitment. Development. 2010;137:2095–105.
pubmed: 20504958 doi: 10.1242/dev.049494
Bond AM, Bhalala OG, Kessler JA. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol. 2012;72:1068–84.
pubmed: 22489086 pmcid: 3773925 doi: 10.1002/dneu.22022
Tambe MA, Ng BG, Freeze HH. N-glycanase 1 transcriptionally regulates aquaporins independent of its enzymatic activity. Cell Rep. 2019;29:4620–31 e4624.
pubmed: 31875565 doi: 10.1016/j.celrep.2019.11.097

Auteurs

Victor J T Lin (VJT)

Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.

Jiangnan Hu (J)

Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA.

Ashwini Zolekar (A)

Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.

Max R Salick (MR)

Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA, USA.

Parul Mittal (P)

Future Industries Institute, University of South Australia, Adelaide, SA, Australia.

Jordan T Bird (JT)

Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Peter Hoffmann (P)

Future Industries Institute, University of South Australia, Adelaide, SA, Australia.

Ajamete Kaykas (A)

Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA, USA.

Stephanie D Byrum (SD)

Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Yu-Chieh Wang (YC)

Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA. yucwang@mcw.edu.
Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA. yucwang@mcw.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH