Lower novelty-related locus coeruleus function is associated with Aβ-related cognitive decline in clinically healthy individuals.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 03 2022
23 03 2022
Historique:
received:
15
07
2021
accepted:
23
02
2022
entrez:
24
3
2022
pubmed:
25
3
2022
medline:
13
4
2022
Statut:
epublish
Résumé
Animal and human imaging research reported that the presence of cortical Alzheimer's Disease's (AD) neuropathology, beta-amyloid and neurofibrillary tau, is associated with altered neuronal activity and circuitry failure, together facilitating clinical progression. The locus coeruleus (LC), one of the initial subcortical regions harboring pretangle hyperphosphorylated tau, has widespread connections to the cortex modulating cognition. Here we investigate whether LC's in-vivo neuronal activity and functional connectivity (FC) are associated with cognitive decline in conjunction with beta-amyloid. We combined functional MRI of a novel versus repeated face-name paradigm, beta-amyloid-PET and longitudinal cognitive data of 128 cognitively unimpaired older individuals. We show that LC activity and LC-FC with amygdala and hippocampus was higher during novelty. We also demonstrated that lower novelty-related LC activity and LC-FC with hippocampus and parahippocampus were associated with steeper beta-amyloid-related cognitive decline. Our results demonstrate the potential of LC's functional properties as a gauge to identify individuals at-risk for AD-related cognitive decline.
Identifiants
pubmed: 35322012
doi: 10.1038/s41467-022-28986-2
pii: 10.1038/s41467-022-28986-2
pmc: PMC8943159
doi:
Substances chimiques
Amyloid beta-Peptides
0
tau Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1571Subventions
Organisme : NIBIB NIH HHS
ID : P41 EB022544
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR021110
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG036694
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR019307
Pays : United States
Organisme : NIH HHS
ID : S10 OD018035
Pays : United States
Organisme : NIH HHS
ID : S10 OD010364
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG068062
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR023043
Pays : United States
Organisme : NIBIB NIH HHS
ID : T32 EB013180
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG046396
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG076153
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB015896
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG062559
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR023401
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol. 25, 59–70 (2018).
pubmed: 28872215
doi: 10.1111/ene.13439
Braak, H. & Tredici, K. D. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 121, 171–181 (2011).
pubmed: 21170538
doi: 10.1007/s00401-010-0789-4
Weinshenker, D. Long road to ruin: noradrenergic dysfunction in neurodegenerative disease. Trends Neurosci. 41, 211–223 (2018).
pubmed: 29475564
pmcid: 5878728
doi: 10.1016/j.tins.2018.01.010
Muresan, Z. & Muresan, V. Neuritic deposits of amyloid-beta peptide in a subpopulation of central nervous system-derived neuronal cells. Mol. Cell Biol. 26, 4982–4997 (2006).
pubmed: 16782885
pmcid: 1489158
doi: 10.1128/MCB.00371-06
Muresan, Z. & Muresan, V. Seeding neuritic plaques from the distance: a possible role for brainstem neurons in the development of Alzheimer’s disease pathology. Neurodegener. Dis. 5, 250–253 (2008).
pubmed: 18322404
pmcid: 2562573
doi: 10.1159/000113716
Braak, H., Thal, D. R., Ghebremedhin, E. & Tredici, K. D. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).
pubmed: 22002422
doi: 10.1097/NEN.0b013e318232a379
Kelly, L. et al. Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer’s patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathol. Appl Neurobiol. 47, 488–505 (2021).
pubmed: 33119191
doi: 10.1111/nan.12674
Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).
pubmed: 17785178
pmcid: 8055171
doi: 10.1016/j.neuron.2007.07.025
Busche, M. A. et al. Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 109, 8740–8745 (2012).
pubmed: 22592800
pmcid: 3365221
doi: 10.1073/pnas.1206171109
Busche, M. A. et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat. Neurosci. 22, 57–64 (2019).
pubmed: 30559471
doi: 10.1038/s41593-018-0289-8
Schultz, A. P. et al. Phases of hyperconnectivity and hypoconnectivity in the default mode and salience networks track with amyloid and tau in clinically normal individuals. J. Neurosci. 37, 4323–4331 (2017).
pubmed: 28314821
pmcid: 5413178
doi: 10.1523/JNEUROSCI.3263-16.2017
Mather, M. & Harley, C. W. The locus coeruleus: essential for maintaining cognitive function and the aging brain. Trends Cogn. Sci. 20, 214–226 (2016).
pubmed: 26895736
pmcid: 4761411
doi: 10.1016/j.tics.2016.01.001
Poe, G. R. et al. Locus coeruleus: a new look at the blue spot. Nat. Rev. Neurosci. 21, 644–659 (2020).
pubmed: 32943779
doi: 10.1038/s41583-020-0360-9
Hansen, N. The longevity of hippocampus-dependent memory is orchestrated by the locus coeruleus-noradrenergic system. Neural Plast. 2017, 2727602 (2017).
pubmed: 28695015
pmcid: 5485371
doi: 10.1155/2017/2727602
Lustberg, D. et al. Central norepinephrine transmission is required for stress-induced repetitive behavior in two rodent models of obsessive-compulsive disorder. Psychopharmacology 237, 1973–1987 (2020).
pubmed: 32313981
pmcid: 7961804
doi: 10.1007/s00213-020-05512-0
Del Cerro, I. et al. Locus coeruleus connectivity alterations in late-life major depressive disorder during a visual oddball task. Neuroimage Clin. 28, 102482 (2020).
pubmed: 33371943
pmcid: 7649653
doi: 10.1016/j.nicl.2020.102482
Clewett, D., Schoeke, A. & Mather, M. Locus coeruleus neuromodulation of memories encoded during negative or unexpected action outcomes. Neurobiol. Learn Mem. 111, 65–70 (2014).
pubmed: 24667494
pmcid: 4039187
doi: 10.1016/j.nlm.2014.03.006
Dagley, A. et al. Harvard aging brain study: dataset and accessibility. NeuroImage 144, 255–258 (2017).
pubmed: 25843019
doi: 10.1016/j.neuroimage.2015.03.069
Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).
pubmed: 1202204
doi: 10.1016/0022-3956(75)90026-6
Morris, J. C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43, 2412–2414 (1993).
pubmed: 8232972
doi: 10.1212/WNL.43.11.2412-a
Sperling, R. A. et al. Encoding novel face-name associations: a functional MRI study. Hum. Brain Mapp. 14, 129–139 (2001).
pubmed: 11559958
pmcid: 6871827
doi: 10.1002/hbm.1047
Jacobs, H. et al. Dynamic behavior of the locus coeruleus during arousal-related memory processing in a multi-modal 7T fMRI paradigm. Elife 9, p.e52059 (2020).
Brooks, J. C., Faull, O. K., Pattinson, K. T. & Jenkinson, M. Physiological noise in brainstem FMRI. Front. Hum. Neurosci. 7, 623 (2013).
pubmed: 24109446
pmcid: 3790256
doi: 10.3389/fnhum.2013.00623
Handwerker, D. A., Ollinger, J. M. & D’Esposito, M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21, 1639–1651 (2004).
pubmed: 15050587
doi: 10.1016/j.neuroimage.2003.11.029
Marmarelis, V. Z. Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann. Biomed. Eng. 21, 573–589 (1993).
pubmed: 8116911
doi: 10.1007/BF02368639
Sperling, R. et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 20, 1400–1410 (2003).
pubmed: 14568509
doi: 10.1016/S1053-8119(03)00391-4
McLaren, D. G., Ries, M. L., Xu, G. & Johnson, S. C. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61, 1277–1286 (2012).
pubmed: 22484411
doi: 10.1016/j.neuroimage.2012.03.068
Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).
pubmed: 15924857
doi: 10.1016/j.neuron.2005.05.002
Schomaker, J. Unexplored territory: beneficial effects of novelty on memory. Neurobiol. Learn. Mem. 161, 46–50 (2019).
pubmed: 30862524
doi: 10.1016/j.nlm.2019.03.005
Vankov, A., Herve-Minvielle, A. & Sara, S. J. Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur. Neurosci. Assoc. 7, 1180–1187 (1995).
doi: 10.1111/j.1460-9568.1995.tb01108.x
Sara, S. J. Learning by neurones: role of attention, reinforcement and behaviour. CR Acad Sci III 321, 193–198 (1998).
doi: 10.1016/S0764-4469(97)89821-6
Krebs, R. M., Park, H. R. P., Bombeke, K. & Boehler, C. N. Modulation of locus coeruleus activity by novel oddball stimuli. Brain Imaging Behav. 12, 577–584 (2018).
pubmed: 28271441
doi: 10.1007/s11682-017-9700-4
Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).
pubmed: 19190638
doi: 10.1038/nrn2573
Uematsu, A., Tan, B. Z. & Johansen, J. P. Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory. Learn Mem. 22, 444–451 (2015).
pubmed: 26330494
pmcid: 4561410
doi: 10.1101/lm.037283.114
Tulving, E. & Kroll, N. Novelty assessment in the brain and long-term memory encoding. Psychon. Bull. Rev. 2, 387–390 (1995).
pubmed: 24203720
doi: 10.3758/BF03210977
Zerbi, V. et al. Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron 103, 702–718. e705 (2019).
pubmed: 31227310
doi: 10.1016/j.neuron.2019.05.034
Hermans, E. J. et al. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 334, 1151–1153 (2011).
pubmed: 22116887
doi: 10.1126/science.1209603
Yebra, M. et al. Action boosts episodic memory encoding in humans via engagement of a noradrenergic system. Nat. Commun. 10, 3534 (2019).
pubmed: 31388000
pmcid: 6684634
doi: 10.1038/s41467-019-11358-8
Liu, K. Y. et al. Noradrenergic-dependent functions are associated with age-related locus coeruleus signal intensity differences. Nat. Commun. 11, 1712 (2020).
pubmed: 32249849
pmcid: 7136271
doi: 10.1038/s41467-020-15410-w
Dahl, M. J. et al. Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat. Hum. Behav. 3, 1203–1214 (2019).
pubmed: 31501542
pmcid: 7203800
doi: 10.1038/s41562-019-0715-2
Jacobs, H. I. L. et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci. Transl. Med. 13, eabj2511 (2021).
pubmed: 34550726
doi: 10.1126/scitranslmed.abj2511
Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).
pubmed: 7032417
doi: 10.1002/ana.410100402
Robertson, I. H. A noradrenergic theory of cognitive reserve: implications for Alzheimer’s disease. Neurobiol. Aging 34, 298–308 (2013).
pubmed: 22743090
doi: 10.1016/j.neurobiolaging.2012.05.019
Singh-Curry, V. & Husain, M. The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia 47, 1434–1448 (2009).
pubmed: 19138694
pmcid: 2697316
doi: 10.1016/j.neuropsychologia.2008.11.033
Robertson, I. H. Right hemisphere role in cognitive reserve. Neurobiol. Aging 35, 1375–1385 (2014).
pubmed: 24378088
doi: 10.1016/j.neurobiolaging.2013.11.028
Lee, T.-H. et al. Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults. Nat. Hum. Behav. 2, 356–366 (2018).
pubmed: 30320223
pmcid: 6176734
doi: 10.1038/s41562-018-0344-1
Lee, T.-H., Kim, S. H., Katz, B. & Mather, M. The decline in intrinsic connectivity between the salience network and locus coeruleus in older adults: implications for distractibility. Front. Aging Neurosci. 12, 2 (2020).
pubmed: 32082136
pmcid: 7004957
doi: 10.3389/fnagi.2020.00002
Bastin, C., Delhaye, E., Moulin, C. & Barbeau, E. J. Novelty processing and memory impairment in Alzheimer’s disease: a review. Neurosci. Biobehav. Rev. 100, 237–249 (2019).
pubmed: 30851282
doi: 10.1016/j.neubiorev.2019.02.021
Sperling, R. A. et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188 (2009).
pubmed: 19640477
pmcid: 2738994
doi: 10.1016/j.neuron.2009.07.003
Huijbers, W. et al. Amyloid deposition is linked to aberrant entorhinal activity among cognitively normal older adults. J. Neurosci. 34, 5200–5210 (2014).
pubmed: 24719099
pmcid: 3983800
doi: 10.1523/JNEUROSCI.3579-13.2014
Huijbers, W. et al. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain 138, 1023–1035 (2015).
pubmed: 25678559
pmcid: 4438387
doi: 10.1093/brain/awv007
McLaren, D. G. et al. Tracking cognitive change over 24 weeks with longitudinal functional magnetic resonance imaging in Alzheimer’s disease. Neurodegener. Dis. 9, 176–186 (2012).
pubmed: 22456451
pmcid: 3369254
doi: 10.1159/000335876
Sepulcre, J. et al. Tau and amyloid β proteins distinctively associate to functional network changes in the aging brain. Alzheimer’s Dement. 13, 1261–1269 (2017).
doi: 10.1016/j.jalz.2017.02.011
Del Cerro, I. et al. Disrupted functional connectivity of the locus coeruleus in healthy adults with parental history of Alzheimer’s disease. J. Psychiatr. Res 123, 81–88 (2020).
pubmed: 32044590
doi: 10.1016/j.jpsychires.2020.01.018
Jacobs, H. I. et al. Relevance of parahippocampal-locus coeruleus connectivity to memory in early dementia. Neurobiol. Aging 36, 618–626 (2015).
pubmed: 25433457
doi: 10.1016/j.neurobiolaging.2014.10.041
Veyrac, A. et al. Novelty determines the effects of olfactory enrichment on memory and neurogenesis through noradrenergic mechanisms. Neuropsychopharmacology 34, 786–795 (2009).
pubmed: 18946468
doi: 10.1038/npp.2008.191
Mather, M. Noradrenaline in the aging brain: promoting cognitive reserve or accelerating Alzheimer’s disease? Semin Cell Dev. Biol. 116, 108–124 (2021).
pubmed: 34099360
doi: 10.1016/j.semcdb.2021.05.013
Li, B., Chohan, M. O., Grundke-Iqbal, I. & Iqbal, K. Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol. 113, 501–511 (2007).
pubmed: 17372746
pmcid: 3191942
doi: 10.1007/s00401-007-0207-8
Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112, 267–277 (2015).
pubmed: 25770991
doi: 10.1016/j.neuroimage.2015.02.064
Orlovsky, I. et al. The relationship between recall of recently versus remotely encoded famous faces and amyloidosis in clinically normal older adults. Alzheimers Dement. 10, 121–129 (2018).
Yesavage, J. A. et al. Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17, 37–49 (1982).
pubmed: 7183759
doi: 10.1016/0022-3956(82)90033-4
Papp, K. V., Rentz, D. M., Orlovsky, I., Sperling, R. A. & Mormino, E. C. Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: the PACC5. Alzheimers Dement 3, 668–677 (2017).
doi: 10.1016/j.trci.2017.10.004
Mormino, E. C. et al. Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid β. Alzheimers Dement. 13, 1004–1012 (2017).
pubmed: 28253478
pmcid: 5573651
doi: 10.1016/j.jalz.2017.01.018
Wechsler, D. WAIS-R Manual: Wechsler Adult Intelligence Scale-revised (Psychological Corporation, 1981).
Grober, E., Ocepek-Welikson, K. & Teresi, J. A. The free and cued selective reminding test: evidence of psychometric adequacy. Psychol. Sci. Q. 51, 266–282 (2009).
Wechsler, D. Wechsler Memory Scale-revised (Psychological Corporation, 1987).
Monsch, A. U. et al. Comparisons of verbal fluency tasks in the detection of dementia of the Alzheimer type. Arch. Neurol. 49, 1253–1258 (1992).
pubmed: 1449404
doi: 10.1001/archneur.1992.00530360051017
Jacobs, H. I. L. et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat. Neurosci. 21, 424–431 (2018).
pubmed: 29403032
pmcid: 5857215
doi: 10.1038/s41593-018-0070-z
Masur, D. M. et al. Distinguishing normal and demented elderly with the selective reminding test. J. Clin. Exp. Neuropsychol. 11, 615–630 (1989).
pubmed: 2808653
doi: 10.1080/01688638908400920
Wechsler D., Psychological C. WAIS-III: Administration and Scoring Manual: Wechsler Adult Intelligence Scale (Psychological Corporation, 1997).
Reitan, R. M. Manual for Administration of Neuropsychological Test Batteries for Adults and Children (Neuropsychology Laboratory, Indiana University Medical Center, 1959).
Benton, A. L. et al Contributions to Neuropsychological Assessment: A Clinical Manual (Oxford University Press, USA, 1994).
Nakagawa, S., Johnson, P. C. & Schielzeth, H. The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).
pubmed: 28904005
pmcid: 5636267
doi: 10.1098/rsif.2017.0213
Mathis, C. A. et al. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med Chem. Lett. 12, 295–298 (2002).
pubmed: 11814781
doi: 10.1016/S0960-894X(01)00734-X
Price, J. C. et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J. Cereb. Blood Flow. Metab. 25, 1528–1547 (2005).
pubmed: 15944649
doi: 10.1038/sj.jcbfm.9600146
Johnson, K. A. et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann. Neurol. 79, 110–119 (2016).
pubmed: 26505746
doi: 10.1002/ana.24546
Hedden, T. et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694 (2009).
pubmed: 19812343
pmcid: 2808119
doi: 10.1523/JNEUROSCI.3189-09.2009
Johnson, K. A. et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann. Neurol. 62, 229–234 (2007).
pubmed: 17683091
doi: 10.1002/ana.21164
Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313, 1924–1938 (2015).
pubmed: 25988462
pmcid: 4486209
doi: 10.1001/jama.2015.4668
Iglesias, J. E. et al. Bayesian segmentation of brainstem structures in MRI. Neuroimage 113, 184–195 (2015).
pubmed: 25776214
doi: 10.1016/j.neuroimage.2015.02.065
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).
doi: 10.1016/j.neuroimage.2011.09.015
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).
pubmed: 22019881
doi: 10.1016/j.neuroimage.2011.10.018
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).
pubmed: 19573611
doi: 10.1016/j.neuroimage.2009.06.060
Keren, N. I., Lozar, C. T., Harris, K. C., Morgan, P. S. & Eckert, M. A. In vivo mapping of the human locus coeruleus. Neuroimage 47, 1261–1267 (2009).
pubmed: 19524044
doi: 10.1016/j.neuroimage.2009.06.012
Avants, B. B., Tustison, N. & Song, G. Advanced normalization tools (ANTS). Insight J. 2, 1–35 (2009).
Marmarelis, V. Z. Nonlinear DYnamic Modeling of Physiological Systems (John Wiley & Sons, 2004).
Leistedt, B. & McEwen, J. D. Exact wavelets on the ball. IEEE Trans. Signal Process. 60, 6257–6269 (2012).
doi: 10.1109/TSP.2012.2215030
McLaren, D. G., Sperling, R. A. & Atri, A. Flexible modulation of network connectivity related to cognition in Alzheimer’s disease. Neuroimage 100, 544–557 (2014).
pubmed: 24852459
doi: 10.1016/j.neuroimage.2014.05.032
Worsley, K. J., Evans, A. C., Marrett, S. & Neelin, P. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow. Metab. 12, 900–918 (1992).
pubmed: 1400644
doi: 10.1038/jcbfm.1992.127
Benjamini, Y. & Heller, R. False discovery rates for spatial signals. J. Am. Stat. Assoc. 102, 1272–1281 (2007).
doi: 10.1198/016214507000000941
Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative adversarial networks. In Proc IEEE/CVF Conference on Computer Vision and Pattern Recognition 4401–4410 (IEEE, 2019).
Karras, T. et al. Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 8110–8119 (IEEE, 2020).
Naidich, T. P. et al Duvernoy’s Atlas of the Human Brain Stem and Cerebellum: High-field MRI, Surface Anatomy, Internal Structure, Vascularization and 3 D Sectional Anatomy (Springer Science & Business Media, 2009).