Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 03 2022
Historique:
received: 31 05 2021
accepted: 21 02 2022
entrez: 24 3 2022
pubmed: 25 3 2022
medline: 13 4 2022
Statut: epublish

Résumé

Idiopathic pulmonary fibrosis is an incurable disease of unknown etiology. Acute exacerbation of idiopathic pulmonary fibrosis is associated with high mortality. Excessive apoptosis of lung epithelial cells occurs in pulmonary fibrosis acute exacerbation. We recently identified corisin, a proapoptotic peptide that triggers acute exacerbation of pulmonary fibrosis. Here, we provide insights into the mechanism underlying the processing and release of corisin. Furthermore, we demonstrate that an anticorisin monoclonal antibody ameliorates lung fibrosis by significantly inhibiting acute exacerbation in the human transforming growth factorβ1 model and acute lung injury in the bleomycin model. By investigating the impact of the anticorisin monoclonal antibody in a general model of acute lung injury, we further unravel the potential of corisin to impact such diseases. These results underscore the role of corisin in the pathogenesis of acute exacerbation of pulmonary fibrosis and acute lung injury and provide a novel approach to treating this incurable disease.

Identifiants

pubmed: 35322016
doi: 10.1038/s41467-022-29064-3
pii: 10.1038/s41467-022-29064-3
pmc: PMC8943153
doi:

Substances chimiques

Antibodies, Monoclonal 0
Peptides 0
Bleomycin 11056-06-7

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1558

Informations de copyright

© 2022. The Author(s).

Références

King, T. E. Jr., Pardo, A. & Selman, M. Idiopathic pulmonary fibrosis. Lancet 378, 1949–1961 (2011).
pubmed: 21719092
Lederer, D. J. & Martinez, F. J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823 (2018).
pubmed: 29742380 doi: 10.1056/NEJMra1705751
Sgalla, G., Biffi, A. & Richeldi, L. Idiopathic pulmonary fibrosis: diagnosis, epidemiology and natural history. Respirology 21, 427–437 (2016).
pubmed: 26595062 doi: 10.1111/resp.12683
Kreuter, M. et al. Acute exacerbation of idiopathic pulmonary fibrosis: international survey and call for harmonisation. Eur. Respir. J. 55, https://doi.org/10.1183/13993003.01760-2019 (2020).
Collard, H. R. et al. Acute exacerbation of idiopathic pulmonary fibrosis. An International Working Group Report. Am. J. Respir. Crit. Care Med. 194, 265–275 (2016).
pubmed: 27299520 doi: 10.1164/rccm.201604-0801CI
Natsuizaka, M. et al. Epidemiologic survey of Japanese patients with idiopathic pulmonary fibrosis and investigation of ethnic differences. Am. J. Respir. Crit. Care Med. 190, 773–779 (2014).
pubmed: 25162152 doi: 10.1164/rccm.201403-0566OC
Ley, B., Collard, H. R. & King, T. E. Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 183, 431–440 (2011).
pubmed: 20935110 doi: 10.1164/rccm.201006-0894CI
King, T. E. Jr., Noble, P. W. & Bradford, W. Z. Treatments for idiopathic pulmonary fibrosis. N. Engl. J. Med. 371, 783–784 (2014).
pubmed: 25147884
Dickson, R. P. et al. Radiographic honeycombing and altered lung microbiota in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 200, 1544–1547 (2019).
pubmed: 31419390 pmcid: 6909839 doi: 10.1164/rccm.201903-0680LE
Han, M. K. et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir. Med. 2, 548–556 (2014).
pubmed: 24767767 pmcid: 4142525 doi: 10.1016/S2213-2600(14)70069-4
Huang, Y. et al. Microbes are associated with host innate immune response in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 196, 208–219 (2017).
pubmed: 28157391 pmcid: 5519968 doi: 10.1164/rccm.201607-1525OC
Molyneaux, P. L. et al. Host-microbial interactions in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 195, 1640–1650 (2017).
pubmed: 28085486 pmcid: 5476909 doi: 10.1164/rccm.201607-1408OC
Takahashi, Y. et al. Impaired diversity of the lung microbiome predicts progression of idiopathic pulmonary fibrosis. Respir. Res. 19, 34 (2018).
pubmed: 29486761 pmcid: 6389110 doi: 10.1186/s12931-018-0736-9
Wang, J. et al. Lung microbiome and host immune tone in subjects with idiopathic pulmonary fibrosis treated with inhaled interferon-gamma. ERJ Open Res. 3, https://doi.org/10.1183/23120541.00008-2017 (2017).
Molyneaux, P. L. et al. Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis. Respir. Res. 18, 29 (2017).
pubmed: 28143484 pmcid: 5286769 doi: 10.1186/s12931-017-0511-3
Weng, D. et al. The role of infection in acute exacerbation of idiopathic pulmonary fibrosis. Mediators Inflamm. 2019, 5160694 (2019).
pubmed: 30718973 pmcid: 6335849 doi: 10.1155/2019/5160694
D’Alessandro-Gabazza, C. N. et al. A Staphylococcus pro-apoptotic peptide induces acute exacerbation of pulmonary fibrosis. Nat. Commun. 11, 1539 (2020).
pubmed: 32210242 pmcid: 7093394 doi: 10.1038/s41467-020-15344-3
Argemi, X., Hansmann, Y., Prola, K. & Prevost, G. Coagulase-negative staphylococci pathogenomics. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20051215 (2019).
Czekaj, T., Ciszewski, M. & Szewczyk, E. M. Staphylococcus haemolyticus—an emerging threat in the twilight of the antibiotics age. Microbiology 161, 2061–2068 (2015).
pubmed: 26363644 doi: 10.1099/mic.0.000178
Yin, Y. et al. A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates. Nat. Commun. 10, 4283 (2019).
pubmed: 31570766 pmcid: 6768887 doi: 10.1038/s41467-019-12072-1
Johansen, M. D., Herrmann, J. L. & Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 18, 392–407 (2020).
pubmed: 32086501 doi: 10.1038/s41579-020-0331-1
Fusco, V. et al. The genus Weissella: taxonomy, ecology and biotechnological potential. Front. Microbiol. 6, 155 (2015).
pubmed: 25852652 pmcid: 4362408 doi: 10.3389/fmicb.2015.00155
Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).
pubmed: 32873928 doi: 10.1038/s41580-020-0270-8
Batandier, C., Leverve, X. & Fontaine, E. Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J. Biol. Chem. 279, 17197–17204 (2004).
pubmed: 14963044 doi: 10.1074/jbc.M310329200
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).
pubmed: 10929711 doi: 10.1016/S0092-8674(00)00008-8
Haruko Saiki, H. et al. A Microbiome-derived peptide induces apoptosis of cells from different tissues. Cells 10, 2885 (2021).
pubmed: 34831108 pmcid: 8616533 doi: 10.3390/cells10112885
Hagimoto, N. et al. TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J. Immunol. 168, 6470–6478 (2002).
pubmed: 12055267 doi: 10.4049/jimmunol.168.12.6470
Dobson, C. M. Protein folding and misfolding. Nature 18, 884–890 (2003). 426(6968).
doi: 10.1038/nature02261
Zhou, W., Šmidlehner, T. & Jerala, R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett. 594, 2199–2212 (2020).
pubmed: 32324903 doi: 10.1002/1873-3468.13796
Jenkins, R. G. et al. An Official American Thoracic Society Workshop Report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 56, 667–679 (2017).
pubmed: 28459387 pmcid: 5800895 doi: 10.1165/rcmb.2017-0096ST
Urawa, M. et al. Protein S is protective in pulmonary fibrosis. J. Thromb. Haemost. 14, 1588–1599 (2016).
pubmed: 27172994 doi: 10.1111/jth.13362
Drakopanagiotakis, F., Xifteri, A., Polychronopoulos, V. & Bouros, D. Apoptosis in lung injury and fibrosis. Eur. Respir. J. 32, 1631–1638 (2008).
pubmed: 19043009 doi: 10.1183/09031936.00176807
D’Alessandro-Gabazza, C. N. et al. Development and preclinical efficacy of novel transforming growth factor-beta1 short interfering RNAs for pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 46, 397–406 (2012).
pubmed: 22033267 doi: 10.1165/rcmb.2011-0158OC
Upagupta, C., Shimbori, C., Alsilmi, R. & Kolb, M. Matrix abnormalities in pulmonary fibrosis. Eur. Respir. Rev. 27, https://doi.org/10.1183/16000617.0033-2018 (2018).
Sauler, M., Bazan, I. S. & Lee, P. J. Cell death in the lung: the apoptosis-necroptosis axis. Annu. Rev. Physiol. 81, 375–402 (2019).
pubmed: 30485762 doi: 10.1146/annurev-physiol-020518-114320
Sisson, T. H. et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 181, 254–263 (2010).
pubmed: 19850947 doi: 10.1164/rccm.200810-1615OC
Bueno, M., Calyeca, J., Rojas, M. & Mora, A. L. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biol. 33, 101509 (2020).
pubmed: 32234292 pmcid: 7251240 doi: 10.1016/j.redox.2020.101509
Kuwano, K. et al. Mitochondria-mediated apoptosis of lung epithelial cells in idiopathic interstitial pneumonias. Lab. Investig. 82, 1695–1706 (2002).
pubmed: 12480919 doi: 10.1097/01.LAB.0000045084.81853.76
Mora, A. L., Bueno, M. & Rojas, M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Investig. 127, 405–414 (2017).
pubmed: 28145905 pmcid: 5272191 doi: 10.1172/JCI87440
Ryter, S. W. et al. Mitochondrial dysfunction as a pathogenic mediator of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Ann. Am. Thorac. Soc. 15, S266–S272 (2018).
pubmed: 30759019 pmcid: 6944396 doi: 10.1513/AnnalsATS.201808-585MG
Sakamoto, K. et al. Serum mitochondrial DNA predicts the risk of acute exacerbation and progression of idiopathic pulmonary fibrosis. Eur. Respir. J. 57, 2001346 (2021).
pubmed: 32855220 pmcid: 8177039 doi: 10.1183/13993003.01346-2020
Ryerson, C. J., Cottin, V., Brown, K. K. & Collard, H. R. Acute exacerbation of idiopathic pulmonary fibrosis: shifting the paradigm. Eur. Respir. J. 46, 512–520 (2015).
pubmed: 26232481 doi: 10.1183/13993003.00419-2015
Jeon, K. et al. Prognostic factors and causes of death in Korean patients with idiopathic pulmonary fibrosis. Respir. Med. 100, 451–457 (2006).
pubmed: 16084076 doi: 10.1016/j.rmed.2005.06.013
Kondoh, Y. et al. Risk factors of acute exacerbation of idiopathic pulmonary fibrosis. Sarcoidosis Vasc. Diffus. Lung Dis. 27, 103–110 (2010).
Raghu, G. et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 198, e44–e68 (2018).
pubmed: 30168753 doi: 10.1164/rccm.201807-1255ST
Kreuter, M. & Maher, T. M. Treatment of acute exacerbation of idiopathic pulmonary fibrosis. A call to arms. Am. J. Respir. Crit. Care Med. 201, 1030–1032 (2020).
pubmed: 31978310 pmcid: 7193842 doi: 10.1164/rccm.202001-0057ED
Collard, H. R. et al. Suspected acute exacerbation of idiopathic pulmonary fibrosis as an outcome measure in clinical trials. Respir. Res. 14, 73 (2013).
pubmed: 23848435 pmcid: 3729659 doi: 10.1186/1465-9921-14-73
Barbas-Filho, J. V. et al. Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP). J. Clin. Pathol. 54, 132–138 (2001).
pubmed: 11215282 pmcid: 1731356 doi: 10.1136/jcp.54.2.132
Uhal, B. D. et al. Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am. J. Physiol. 269, L819–L828 (1995).
pubmed: 8572243 doi: 10.1152/ajpcell.1995.269.4.C819
Gu, X., Zhou, F., Wang, Y., Fan, G. & Cao, B. Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment. Eur. Respir. Rev. 29, 200038 (2020).
pubmed: 32699026 doi: 10.1183/16000617.0038-2020
Bellani, G. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315, 788–800 (2016).
pubmed: 26903337 doi: 10.1001/jama.2016.0291
Force, A. D. T. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307, 2526–2533 (2012).
Ware, L. B. & Matthay, M. A. The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349 (2000).
pubmed: 10793167 doi: 10.1056/NEJM200005043421806
Marchioni, A. et al. Acute exacerbation of idiopathic pulmonary fibrosis: lessons learned from acute respiratory distress syndrome? Crit. Care 22, 80 (2018).
pubmed: 29566734 pmcid: 5865285 doi: 10.1186/s13054-018-2002-4
Matthay, M. A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Prim. 5, 18 (2019).
pubmed: 30872586 doi: 10.1038/s41572-019-0069-0
Domscheit, H., Hegeman, M. A., Carvalho, N. & Spieth, P. M. Molecular Dynamics of Lipopolysaccharide-Induced Lung Injury in Rodents. Front. Physiol. 11, 36 (2020).
pubmed: 32116752 pmcid: 7012903 doi: 10.3389/fphys.2020.00036
Menezes, S. L. et al. Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J. Appl. Physiol. 98, 1777–1783 (2005).
pubmed: 15649870 doi: 10.1152/japplphysiol.01182.2004
Chiba, H., Otsuka, M. & Takahashi, H. Significance of molecular biomarkers in idiopathic pulmonary fibrosis: a mini review. Respir. Investig. 56, 384–391 (2018).
pubmed: 30030108 doi: 10.1016/j.resinv.2018.06.001
Collard, H. R. et al. Plasma biomarker profiles in acute exacerbation of idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 299, L3–L7 (2010).
pubmed: 20418386 pmcid: 2904092 doi: 10.1152/ajplung.90637.2008
Moodley, Y. P. et al. Analysis by proteomics reveals unique circulatory proteins in idiopathic pulmonary fibrosis. Respirology 24, 1111–1114 (2019).
pubmed: 31393655 doi: 10.1111/resp.13668
O’Dwyer, D. N. et al. The peripheral blood proteome signature of idiopathic pulmonary fibrosis is distinct from normal and is associated with novel immunological processes. Sci. Rep. 7, 46560 (2017).
pubmed: 28440314 pmcid: 5404506 doi: 10.1038/srep46560
Rosas, I. O. et al. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med. 5, e93 (2008).
pubmed: 18447576 pmcid: 2346504 doi: 10.1371/journal.pmed.0050093
Todd, J. L. et al. Peripheral blood proteomic profiling of idiopathic pulmonary fibrosis biomarkers in the multicentre IPF-PRO Registry. Respir. Res. 20, 227 (2019).
pubmed: 31640794 pmcid: 6805665 doi: 10.1186/s12931-019-1190-z
White, E. S. et al. Plasma surfactant protein-D, matrix metalloproteinase-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 194, 1242–1251 (2016).
pubmed: 27149370 pmcid: 5114439 doi: 10.1164/rccm.201505-0862OC
Yang, I. V. et al. The peripheral blood transcriptome identifies the presence and extent of disease in idiopathic pulmonary fibrosis. PLoS ONE 7, e37708 (2012).
pubmed: 22761659 pmcid: 3382229 doi: 10.1371/journal.pone.0037708
Maranville, J. C. & Di Rienzo, A. Combining genetic and nongenetic biomarkers to realize the promise of pharmacogenomics for inflammatory diseases. Pharmacogenomics 15, 1931–1940 (2014).
pubmed: 25495413 doi: 10.2217/pgs.14.129
Wang, J. et al. Research advances in the mechanism of pulmonary fibrosis induced by coronavirus disease 2019 and the corresponding therapeutic measures. Zhonghua Shao Shang Za Zhi 36, 691–697 (2020).
pubmed: 32174095
Das, K. M. et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J. Radio. Imaging 27, 342–349 (2017).
doi: 10.4103/ijri.IJRI_469_16
George, P. M., Wells, A. U. & Jenkins, R. G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir. Med. 8, 807–815 (2020).
pubmed: 32422178 pmcid: 7228727 doi: 10.1016/S2213-2600(20)30225-3
Meyer, K. C. et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir. Crit. Care Med. 185, 1004–1014 (2012).
pubmed: 22550210 doi: 10.1164/rccm.201202-0320ST
Fujiwara, K. et al. Inhibition of cell apoptosis and amelioration of pulmonary fibrosis by thrombomodulin. Am. J. Pathol. 187, 2312–2322 (2017).
pubmed: 28739343 doi: 10.1016/j.ajpath.2017.06.013
Foster, K. A., Oster, C. G., Mayer, M. M., Avery, M. L. & Audus, K. L. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp. Cell Res. 243, 359–366 (1998).
pubmed: 9743595 doi: 10.1006/excr.1998.4172
Nardone, L. L. & Andrews, S. B. Cell line A549 as a model of the type II pneumocyte. Phospholipid biosynthesis from native and organometallic precursors. Biochim. Biophys. Acta 573, 276–295 (1979).
pubmed: 444551 doi: 10.1016/0005-2760(79)90061-4
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
pubmed: 28298431 pmcid: 5411767 doi: 10.1101/gr.215087.116
Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).
pubmed: 26076426 doi: 10.1038/nmeth.3444
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
pubmed: 25409509 pmcid: 4237348 doi: 10.1371/journal.pone.0112963
Hunt, M. et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16, 294 (2015).
pubmed: 26714481 pmcid: 4699355 doi: 10.1186/s13059-015-0849-0
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput Biol. 19, 455–477 (2012).
pubmed: 22506599 pmcid: 3342519 doi: 10.1089/cmb.2012.0021
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 13, e1005595 (2017).
pubmed: 28594827 pmcid: 5481147 doi: 10.1371/journal.pcbi.1005595
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2017).
pmcid: 5850278 doi: 10.1093/molbev/msx319
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
pubmed: 23422339 pmcid: 3624806 doi: 10.1093/bioinformatics/btt086
Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. Chapter 10, Unit 10 13, https://doi.org/10.1002/0471250953.bi1003s00 (2003).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
doi: 10.1093/bioinformatics/btu153 pubmed: 24642063
Francis, M. B. & Carrico, I. S. New frontiers in protein bioconjugation. Curr. Opin. Chem. Biol. 14, 771–773 (2010).
pubmed: 21112236 doi: 10.1016/j.cbpa.2010.11.006
Koniev, O. & Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495–5551 (2015).
pubmed: 26000775 doi: 10.1039/C5CS00048C
Macardle, P. J. & Bailey, S. In Cell Biology: A Laboratory Handbook, Vol. 1 (ed Celis, J. E.) Ch. 57, 475–490 (Elsevier, 2006).
Tomaru, A. et al. Oligonucleotide-targeting periostin ameliorates pulmonary fibrosis. Gene Ther. 24, 706–716 (2017).
pubmed: 28820502 doi: 10.1038/gt.2017.80
Yasui, H. et al. Intratracheal administration of activated protein C inhibits bleomycin-induced lung fibrosis in the mouse. Am. J. Respir. Crit. Care Med. 163, 1660–1668 (2001).
pubmed: 11401891 doi: 10.1164/ajrccm.163.7.9911068
Ashcroft, T., Simpson, J. M. & Timbrell, V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 41, 467–470 (1988).
pubmed: 3366935 pmcid: 1141479 doi: 10.1136/jcp.41.4.467

Auteurs

Corina N D'Alessandro-Gabazza (CN)

Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.
Center for Intractable Diseases, Mie University, Tsu, Mie, Japan.
Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Taro Yasuma (T)

Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.
Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Tetsu Kobayashi (T)

Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Masaaki Toda (M)

Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.
Center for Intractable Diseases, Mie University, Tsu, Mie, Japan.

Ahmed M Abdel-Hamid (AM)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia, Egypt.

Hajime Fujimoto (H)

Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Osamu Hataji (O)

Respiratory Center, Matsusaka Municipal Hospital, Matsusaka, Mie, Japan.

Hiroki Nakahara (H)

Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Atsuro Takeshita (A)

Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.
Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Kota Nishihama (K)

Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Tomohito Okano (T)

Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Haruko Saiki (H)

Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Yuko Okano (Y)

Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.
Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Atsushi Tomaru (A)

Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Valeria Fridman D'Alessandro (V)

Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Miyako Shiraishi (M)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Akira Mizoguchi (A)

Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, Japan.

Ryoichi Ono (R)

Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie, Japan.

Junpei Ohtsuka (J)

Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
BioComo Incorporation, Komono, Mie, Japan.

Masayuki Fukumura (M)

Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
BioComo Incorporation, Komono, Mie, Japan.

Tetsuya Nosaka (T)

Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie, Japan.

Xuenan Mi (X)

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Diwakar Shukla (D)

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Kensuke Kataoka (K)

Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan.

Yasuhiro Kondoh (Y)

Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan.

Masaki Hirose (M)

Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan.

Toru Arai (T)

Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan.

Yoshikazu Inoue (Y)

Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan.

Yutaka Yano (Y)

Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.

Roderick I Mackie (RI)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Department of Microbiology, The University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Center for East Asian & Pacific Studies, the University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Isaac Cann (I)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, USA. icann@illinois.edu.
Department of Microbiology, The University of Illinois at Urbana-Champaign, Urbana, IL, USA. icann@illinois.edu.
Center for East Asian & Pacific Studies, the University of Illinois at Urbana-Champaign, Urbana, IL, USA. icann@illinois.edu.
Department of Animal Science, The University of Illinois at Urbana-Champaign, Urbana, IL, USA. icann@illinois.edu.
Division of Nutritional Sciences, The University of Illinois at Urbana-Champaign, Urbana, IL, USA. icann@illinois.edu.

Esteban C Gabazza (EC)

Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan. gabazza@doc.medic.mie-u.ac.jp.
Center for Intractable Diseases, Mie University, Tsu, Mie, Japan. gabazza@doc.medic.mie-u.ac.jp.
Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, USA. gabazza@doc.medic.mie-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH