eIF6 rebinding dynamically couples ribosome maturation and translation.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 03 2022
Historique:
received: 15 10 2021
accepted: 03 03 2022
entrez: 24 3 2022
pubmed: 25 3 2022
medline: 13 4 2022
Statut: epublish

Résumé

Protein synthesis is a cyclical process consisting of translation initiation, elongation, termination and ribosome recycling. The release factors SBDS and EFL1-both mutated in the leukemia predisposition disorder Shwachman-Diamond syndrome - license entry of nascent 60S ribosomal subunits into active translation by evicting the anti-association factor eIF6 from the 60S intersubunit face. We find that in mammalian cells, eIF6 holds all free cytoplasmic 60S subunits in a translationally inactive state and that SBDS and EFL1 are the minimal components required to recycle these 60S subunits back into additional rounds of translation by evicting eIF6. Increasing the dose of eIF6 in mice in vivo impairs terminal erythropoiesis by sequestering post-termination 60S subunits in the cytoplasm, disrupting subunit joining and attenuating global protein synthesis. These data reveal that ribosome maturation and recycling are dynamically coupled by a mechanism that is disrupted in an inherited leukemia predisposition disorder.

Identifiants

pubmed: 35322020
doi: 10.1038/s41467-022-29214-7
pii: 10.1038/s41467-022-29214-7
pmc: PMC8943182
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1562

Subventions

Organisme : Wellcome Trust
ID : 105914/Z/14/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 100140
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T012412/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Department of Health
ID : BRC-1215-20014
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 206171/Z/17/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 202905/Z/16/Z
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s).

Références

Ceci, M. et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426, 579–584 (2003).
pubmed: 14654845 doi: 10.1038/nature02160
Russell, D. W. & Spremulli, L. L. Mechanism of action of the wheat germ ribosome dissociation factor: interaction with the 60 S subunit. Arch. Biochem. Biophys. 201, 518–526 (1980).
pubmed: 6901609 doi: 10.1016/0003-9861(80)90540-8
Gartmann, M. et al. Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J. Biol. Chem. 285, 14848–14851 (2010).
pubmed: 20356839 pmcid: 2865328 doi: 10.1074/jbc.C109.096057
Basu, U., Si, K., Warner, J. R. & Maitra, U. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol. Cell Biol. 21, 1453–1462 (2001).
pubmed: 11238882 pmcid: 86691 doi: 10.1128/MCB.21.5.1453-1462.2001
Senger, B. et al. The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol. Cell 8, 1363–1373 (2001).
pubmed: 11779510 doi: 10.1016/S1097-2765(01)00403-8
Becam, A. M., Nasr, F., Racki, W. J., Zagulski, M. & Herbert, C. J. Ria1p (Ynl163c), a protein similar to elongation factors 2, is involved in the biogenesis of the 60S subunit of the ribosome in Saccharomyces cerevisiae. Mol. Genet. Genomics 266, 454–462 (2001).
pubmed: 11713675 doi: 10.1007/s004380100548
Menne, T. F. et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat. Genet. 39, 486–495 (2007).
pubmed: 17353896 doi: 10.1038/ng1994
Finch, A. J. et al. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes Dev. 25, 917–929 (2011).
pubmed: 21536732 pmcid: 3084026 doi: 10.1101/gad.623011
Wong, C. C., Traynor, D., Basse, N., Kay, R. R. & Warren, A. J. Defective ribosome assembly in Shwachman-Diamond syndrome. Blood 118, 4305–4312 (2011).
pubmed: 21803848 doi: 10.1182/blood-2011-06-353938
Weis, F. et al. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat. Struct. Mol. Biol. 22, 914–919 (2015).
pubmed: 26479198 pmcid: 4871238 doi: 10.1038/nsmb.3112
Kargas, V. et al. Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. Elife 8, e44904 (2019).
Boocock, G. R. et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat. Genet. 33, 97–101 (2003).
pubmed: 12496757 doi: 10.1038/ng1062
Tan, S. et al. EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood 134, 277–290 (2019).
pubmed: 31151987 pmcid: 6754720 doi: 10.1182/blood.2018893404
Warren, A. J. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv. Biol. Regul. 67, 109–127 (2018).
pubmed: 28942353 pmcid: 6710477 doi: 10.1016/j.jbior.2017.09.002
Tan, S. et al. Somatic genetic rescue of a germline ribosome assembly defect. Nat. Commun. 12, 5044 (2021).
pubmed: 34413298 pmcid: 8377010 doi: 10.1038/s41467-021-24999-5
Kennedy, A. L. et al. Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nat. Commun. 12, 1334 (2021).
pubmed: 33637765 pmcid: 7910481 doi: 10.1038/s41467-021-21588-4
Shen, P. S. et al. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75–78 (2015).
pubmed: 25554787 pmcid: 4451101 doi: 10.1126/science.1259724
Su, T. et al. Structure and function of Vms1 and Arb1 in RQC and mitochondrial proteome homeostasis. Nature 570, 538–542 (2019).
pubmed: 31189955 doi: 10.1038/s41586-019-1307-z
Alkalaeva, E. Z., Pisarev, A. V., Frolova, L. Y., Kisselev, L. L. & Pestova, T. V. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125, 1125–1136 (2006).
pubmed: 16777602 doi: 10.1016/j.cell.2006.04.035
Pisarev, A. V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 37, 196–210 (2010).
pubmed: 20122402 pmcid: 2951834 doi: 10.1016/j.molcel.2009.12.034
Shoemaker, C. J. & Green, R. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl Acad. Sci. USA 108, E1392–E1398 (2011).
pubmed: 22143755 pmcid: 3251084 doi: 10.1073/pnas.1113956108
Skabkin, M. A. et al. Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes Dev. 24, 1787–1801 (2010).
pubmed: 20713520 pmcid: 2922506 doi: 10.1101/gad.1957510
Ban, N. et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 24, 165–169 (2014).
pubmed: 24524803 pmcid: 4358319 doi: 10.1016/j.sbi.2014.01.002
Heuer, A. et al. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat. Struct. Mol. Biol. 24, 453–460 (2017).
pubmed: 28368393 doi: 10.1038/nsmb.3396
Tzamarias, D., Roussou, I. & Thireos, G. Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation. Cell 57, 947–954 (1989).
pubmed: 2661015 doi: 10.1016/0092-8674(89)90333-4
Ashe, M. P., De Long, S. K. & Sachs, A. B. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11, 833–848 (2000).
pubmed: 10712503 pmcid: 14814 doi: 10.1091/mbc.11.3.833
Surks, M. I. & Berkowitz, M. Rat hepatic polysome profiles and in vitro protein synthesis during hypoxia. Am. J. Physiol. 220, 1606–1609 (1971).
pubmed: 5087807 doi: 10.1152/ajplegacy.1971.220.6.1606
Uesono, Y. & Toh, E. A. Transient inhibition of translation initiation by osmotic stress. J. Biol. Chem. 277, 13848–13855 (2002).
pubmed: 11796711 doi: 10.1074/jbc.M108848200
Pisareva, V. P., Skabkin, M. A., Hellen, C. U., Pestova, T. V. & Pisarev, A. V. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817 (2011).
pubmed: 21448132 pmcid: 3101999 doi: 10.1038/emboj.2011.93
Mills, E. W., Wangen, J., Green, R. & Ingolia, N. T. Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets. Cell Rep. 17, 1–10 (2016).
pubmed: 27681415 pmcid: 5111367 doi: 10.1016/j.celrep.2016.08.088
Groft, C. M., Beckmann, R., Sali, A. & Burley, S. K. Crystal structures of ribosome anti-association factor IF6. Nat. Struct. Biol. 7, 1156–1164 (2000).
pubmed: 11101899 doi: 10.1038/82017
Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. & Ban, N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334, 941–948 (2012).
doi: 10.1126/science.1211204
Yip, M. C. J. et al. Mechanism for recycling tRNAs on stalled ribosomes. Nat. Struct. Mol. Biol. 26, 343–349 (2019).
pubmed: 31011209 doi: 10.1038/s41594-019-0211-4
Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28 (2006).
pubmed: 16400644 doi: 10.1002/gene.20180
Urlinger, S. et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl Acad. Sci. USA 97, 7963–7968 (2000).
pubmed: 10859354 pmcid: 16653 doi: 10.1073/pnas.130192197
Martin, T. E. & Hartwell, L. H. Resistance of active yeast ribosomes to dissociation by KCl. J. Biol. Chem. 245, 1504–1506 (1970).
pubmed: 5442831 doi: 10.1016/S0021-9258(18)63264-8
Lee, S. et al. Somatic uniparental disomy mitigates the most damaging EFL1 allele combination in Shwachman-Diamond syndrome. Blood 138, 2117–2128 (2021).
Pronk, C. J. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442 (2007).
pubmed: 18371379 doi: 10.1016/j.stem.2007.07.005
Chen, K. et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl Acad. Sci. USA 106, 17413–17418 (2009).
pubmed: 19805084 pmcid: 2762680 doi: 10.1073/pnas.0909296106
Satake, S. et al. C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced “emergency” granulopoiesis. J. Immunol. 189, 4546–4555 (2012).
pubmed: 23024276 doi: 10.4049/jimmunol.1103007
McGrath, K. E., Catherman, S. C. & Palis, J. Delineating stages of erythropoiesis using imaging flow cytometry. Methods 112, 68–74 (2017).
pubmed: 27582124 doi: 10.1016/j.ymeth.2016.08.012
Konstantinidis, D. G. et al. Signaling and cytoskeletal requirements in erythroblast enucleation. Blood 119, 6118–6127 (2012).
pubmed: 22461493 pmcid: 3383020 doi: 10.1182/blood-2011-09-379263
Jarzebowski, L. et al. Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA 24, 1803–1812 (2018).
pubmed: 30242063 pmcid: 6239186 doi: 10.1261/rna.067843.118
Gandin, V. et al. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 455, 684–688 (2008).
pubmed: 18784653 pmcid: 2753212 doi: 10.1038/nature07267
Zhang, S., Shi, M., Hui, C. C. & Rommens, J. M. Loss of the mouse ortholog of the shwachman-diamond syndrome gene (Sbds) results in early embryonic lethality. Mol. Cell Biol. 26, 6656–6663 (2006).
pubmed: 16914746 pmcid: 1592835 doi: 10.1128/MCB.00091-06
Tourlakis, M. E. et al. Deficiency of Sbds in the mouse pancreas leads to features of Shwachman-Diamond syndrome, with loss of zymogen granules. Gastroenterology 143, 481–492 (2012).
pubmed: 22510201 doi: 10.1053/j.gastro.2012.04.012
Shuga, J., Zhang, J., Samson, L. D., Lodish, H. F. & Griffith, L. G. In vitro erythropoiesis from bone marrow-derived progenitors provides a physiological assay for toxic and mutagenic compounds. Proc. Natl Acad. Sci. USA 104, 8737–8742 (2007).
pubmed: 17502613 pmcid: 1885572 doi: 10.1073/pnas.0701829104
Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).
pubmed: 24670665 pmcid: 4015626 doi: 10.1038/nature13035
Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).
pubmed: 22842542 pmcid: 4912033 doi: 10.1038/nmeth.2115
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701 pmcid: 3690530 doi: 10.1016/j.jsb.2012.09.006
Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5, e18722 (2016).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980 pmcid: 6760662 doi: 10.1016/j.jsb.2015.08.008
Tan, S. J., Amos, W. & Laughlin, S. B. Captivity selects for smaller eyes. Curr. Biol. 15, R540–R542 (2005).
pubmed: 16051157 doi: 10.1016/j.cub.2005.07.019

Auteurs

Pekka Jaako (P)

Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 413 90, Gothenburg, Sweden.

Alexandre Faille (A)

Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.

Shengjiang Tan (S)

Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.

Chi C Wong (CC)

Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK.

Norberto Escudero-Urquijo (N)

Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.

Pablo Castro-Hartmann (P)

Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.

Penny Wright (P)

Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK.

Christine Hilcenko (C)

Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.

David J Adams (DJ)

Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.

Alan J Warren (AJ)

Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK. ajw1000@cam.ac.uk.
Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. ajw1000@cam.ac.uk.
Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. ajw1000@cam.ac.uk.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH