A toolkit for recombinant production of seven human EGF family growth factors in active conformation.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 03 2022
23 03 2022
Historique:
received:
07
12
2021
accepted:
14
03
2022
entrez:
24
3
2022
pubmed:
25
3
2022
medline:
5
4
2022
Statut:
epublish
Résumé
Epidermal growth factors (EGF) play a wide range of roles in embryogenesis, skin development, immune response homeostasis. They are involved in several pathologies as well, including several cancer types, psoriasis, chronic pain and chronic kidney disease. All members share the structural EGF domain, which is responsible for receptor interaction, thereby initiating transduction of signals. EGF growth factors have intense use in fundamental research and high potential for biotechnological applications. However, due to their structural organization with three disulfide bonds, recombinant production of these factors in prokaryotic systems is not straightforward. A significant fraction usually forms inclusion bodies. For the fraction remaining soluble, misfolding and incomplete disulfide bond formation may affect the amount of active factor in solution, which can compromise experimental conclusions and biotechnological applications. In this work, we describe a reliable procedure to produce seven human growth factors of the EGF family in Escherichia coli. Biophysical and stability analyses using limited proteolysis, light scattering, circular dichroism and nanoDSF show that the recombinant factors present folded and stable conformation. Cell proliferation and scratch healing assays confirmed that the recombinant factors are highly active at concentrations as low as 5 ng/ml.
Identifiants
pubmed: 35322149
doi: 10.1038/s41598-022-09060-9
pii: 10.1038/s41598-022-09060-9
pmc: PMC8943033
doi:
Substances chimiques
Recombinant Proteins
0
Epidermal Growth Factor
62229-50-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5034Informations de copyright
© 2022. The Author(s).
Références
Yang, C. C. & Chang, K. W. Eicosanoids and HB-EGF/EGFR in cancer. Cancer Metastasis Rev. 37, 385–395 (2018).
pubmed: 29936588
doi: 10.1007/s10555-018-9746-9
Zhao, J. et al. Betacellulin enhances ovarian cancer cell migration by up-regulating Connexin43 via MEK-ERK signaling. Cell. Signal. 65, 109439 (2020).
pubmed: 31654720
doi: 10.1016/j.cellsig.2019.109439
Carvalho, S. et al. An antibody to amphiregulin, an abundant growth factor in patients’ fluids, inhibits ovarian tumors. Oncogene 35, 438–447 (2016).
pubmed: 25915843
doi: 10.1038/onc.2015.93
Verma, V. et al. The dichotomous role of epiregulin in pain. Pain 161, 1052–1064 (2020).
pubmed: 31917773
pmcid: 7166142
doi: 10.1097/j.pain.0000000000001792
Liu, Y. Epidermal growth factor on the healing of human subacute tympanic membrane perforation. Am. J. Otolaryngol. 41, 102399 (2020).
pubmed: 31948693
doi: 10.1016/j.amjoto.2020.102399
Roskoski, R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 79, 34–74 (2014).
pubmed: 24269963
doi: 10.1016/j.phrs.2013.11.002
Ho, J., Moyes, D. L., Tavassoli, M. & Naglik, J. R. The role of ErbB receptors in infection. Trends Microbiol. 25, 942–952 (2017).
pubmed: 28522156
pmcid: 7126822
doi: 10.1016/j.tim.2017.04.009
Singh, B., Carpenter, G. & Coffey, R. J. EGF receptor ligands: Recent advances. F1000Research 5, 2270 (2016).
doi: 10.12688/f1000research.9025.1
Schneider, M. R. & Wolf, E. The epidermal growth factor receptor ligands at a glance. J. Cell. Physiol. 218, 460–466 (2009).
pubmed: 19006176
doi: 10.1002/jcp.21635
Barbacci, E. G. et al. The structural basis for the specificity of epidermal growth factor and heregulin binding. J. Biol. Chem. 270, 9585–9589 (1995).
pubmed: 7721889
doi: 10.1074/jbc.270.16.9585
Beerli, R. R. & Hynes, N. E. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J. Biol. Chem. 271, 6071–6076 (1996).
pubmed: 8626392
doi: 10.1074/jbc.271.11.6071
Dreux, A. C., Lamb, D. J., Modjtahedi, H. & Ferns, G. A. A. The epidermal growth factor receptors and their family of ligands: Their putative role in atherogenesis. Atherosclerosis 186, 38–53 (2006).
pubmed: 16076471
doi: 10.1016/j.atherosclerosis.2005.06.038
Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).
pubmed: 11252954
doi: 10.1038/35052073
Harris, R. C., Chung, E. & Coffey, R. J. EGF receptor ligands. Exp. Cell Res. 284, 2–13 (2003).
pubmed: 12648462
doi: 10.1016/S0014-4827(02)00105-2
Zhao, B. et al. A treatment combination of igf and egf promotes hair growth in the angora rabbit. Genes (Basel). 12, 1–9 (2021).
Silva, C. O. et al. EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization for photothermal therapy. PLoS ONE 11, 1–29 (2016).
doi: 10.1371/journal.pone.0165419
Sundqvist, A. et al. TGFβ and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene 39, 4436–4449 (2020).
pubmed: 32350443
pmcid: 7253358
doi: 10.1038/s41388-020-1299-z
Eissazadeh, S. et al. Production of recombinant human epidermal growth factor in Pichia pastoris. Braz. J. Microbiol. 48, 286–293 (2017).
pubmed: 27998673
pmcid: 5470459
doi: 10.1016/j.bjm.2016.10.017
Davis, K. M. et al. Production of glycosylated heparin-binding EGF-like growth factor in HeLa cells using vaccinia virus. Protein Exp. Purif. 8, 57–67 (1996).
doi: 10.1006/prep.1996.0074
Shin, S., Li, N., Kobayashi, N., Yoon, J. W. & Jun, H. S. Remission of diabetes by β-cell regeneration in diabetic mice treated with a recombinant adenovirus expressing betacellulin. Mol. Ther. 16, 854–861 (2008).
pubmed: 28178488
doi: 10.1038/mt.2008.22
Khan, M. A. et al. Expression line approach to recombinant human epidermal growth factor into the yeast, Pichia pastoris from Huh-7 cell line. Mol. Biol. Rep. 41, 1445–1451 (2014).
pubmed: 24413989
doi: 10.1007/s11033-013-2989-1
Sato, K. et al. Solution structure of epiregulin and the effect of its C-terminal domain for receptor binding affinity. FEBS Lett. 553, 232–238 (2003).
pubmed: 14572630
doi: 10.1016/S0014-5793(03)01005-6
Ferrer Soler, L., Cedano, J., Querol, E. & De Llorens, R. Cloning, expression and purification of human epidermal growth factor using different expression systems. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 788, 113–123 (2003).
doi: 10.1016/S1570-0232(02)01035-8
Khalili, M., Soleyman, M. R., Baazm, M. & Beyer, C. High-level expression and purification of soluble bioactive recombinant human heparin-binding epidermal growth factor in Escherichia coli. Cell Biol. Int. 39, 858–864 (2015).
pubmed: 25712700
doi: 10.1002/cbin.10454
Lu, W., Cao, P., Lei, H. & Zhang, S. High-level expression and purification of heparin-binding epidermal growth factor (HB-EGF) with SUMO fusion. Mol. Biotechnol. 44, 198–203 (2010).
pubmed: 19950003
doi: 10.1007/s12033-009-9226-0
Kado, Y. et al. Epiregulin recognition mechanisms by anti-epiregulin antibody 9E5: Structural, functional, and molecular dynamics simulation analyses. J. Biol. Chem. 291, 2319–2330 (2016).
pubmed: 26627827
doi: 10.1074/jbc.M115.656009
Thompson, S. A., Harris, A., Hoang, D., Ferrer, M. & Johnson, G. R. COOH-terminal extended recombinant amphiregulin with bioactivity comparable with naturally derived growth factor. J. Biol. Chem. 271, 17927–17931 (1996).
pubmed: 8663535
doi: 10.1074/jbc.271.30.17927
Miura, K. et al. Solution structure of betacellulin, a new member of EGF-family ligands. Biochem. Biophys. Res. Commun. 294, 1040–1046 (2002).
pubmed: 12074582
doi: 10.1016/S0006-291X(02)00585-5
Ma, Y. et al. High efficient expression, purification, and functional characterization of native human epidermal growth factor in Escherichia coli. Biomed Res. Int. 2016 (2016).
Lobstein, J. et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11, 1 (2012).
doi: 10.1186/1475-2859-11-56
Kaplan, O. et al. Enhanced mitogenic activity of recombinant human vascular endothelial growth factor VEGF121 expressed in E. coli Origami B (DE3) with molecular chaperones. PLoS ONE 11, 1–22 (2016).
doi: 10.1371/journal.pone.0163697
Abdull Razis, A. F. et al. Expression of recombinant human epidermal growth factor in Escherichia coli and characterization of its biological activity. Appl. Biochem. Biotechnol. 144, 249–261 (2008).
pubmed: 18556814
doi: 10.1007/s12010-007-8019-9
Qiang, W. et al. Molecular pharming of the recombinant protein hegf-hegf concatenated with oleosin using transgenic arabidopsis. Genes (Basel). 11, 1–13 (2020).
doi: 10.3390/genes11090959
Zheng, X., Wu, X., Fu, X., Dai, D. & Wang, F. Expression and purification of human epidermal growth factor (hEGF) fused with GB1. Biotechnol. Biotechnol. Equip. 30, 813–818 (2016).
doi: 10.1080/13102818.2016.1166984
Nguyen, M. T. et al. Prokaryotic soluble overexpression and purification of human VEGF165 by fusion to a maltose binding protein tag. PLoS ONE 11, 1–15 (2016).
doi: 10.1371/journal.pone.0156296
Zhao, Q., Xu, W., Xing, L. & Lin, Z. Recombinant production of medium- to large-sized peptides in Escherichia coli using a cleavable self-aggregating tag. Microb. Cell Fact. 15, 1–9 (2016).
doi: 10.1186/s12934-016-0534-3
Kado, Y. et al. Epiregulin recognition mechanisms by 9E5(Fab) antibody. J. Biol. Chem. 5, 1–30 (2015).
Macdonald-Obermann, J. L. & Pike, L. J. Different epidermal growth factor (EGF) receptor ligands show distinct kinetics and biased or partial agonism for homodimer and heterodimer formation. J. Biol. Chem. 289, 26178–26188 (2014).
pubmed: 25086039
pmcid: 4176247
doi: 10.1074/jbc.M114.586826
Garrett, T. P. J. et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell 110, 763–773 (2002).
pubmed: 12297049
doi: 10.1016/S0092-8674(02)00940-6
Ferguson, K. M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003).
pubmed: 12620237
doi: 10.1016/S1097-2765(03)00047-9
Freed, D. M. et al. EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics. Cell 171, 683-695.e18 (2017).
pubmed: 28988771
pmcid: 5650921
doi: 10.1016/j.cell.2017.09.017
Prestrelski, S. J. et al. Solution structure and dynamics of epidermal growth factor and transforming growth factor α. J. Biol. Chem. 267, 319–322 (1992).
pubmed: 1730598
doi: 10.1016/S0021-9258(18)48496-7
Hang, Q. et al. Integrin α5 suppresses the phosphorylation of epidermal growth factor receptor and its cellular signaling of cell proliferation via N-glycosylation. J. Biol. Chem. 290, 29345–29360 (2015).
pubmed: 26483551
pmcid: 4705939
doi: 10.1074/jbc.M115.682229
Henriksen, L., Grandal, M. V., Knudsen, S. L. J., van Deurs, B. & Grøvdal, L. M. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS One 8, (2013).
Kochupurakkal, B. S. et al. Epigen, the last ligand of ErbB receptors, reveals intricate relationships between affinity and mitogenicity. J. Biol. Chem. 280, 8503–8512 (2005).
pubmed: 15611079
doi: 10.1074/jbc.M413919200
Hu, Z. X. et al. PI3K-mediated glioprotective effect of epidermal growth factor under oxidative stress conditions. Int. J. Ophthalmol. 7, 413–420 (2014).
pubmed: 24967183
pmcid: 4067651
You, D. H. & Nam, M. J. Effects of human epidermal growth factor gene-transfected mesenchymal stem cells on fibroblast migration and proliferation. Cell Prolif. 46, 408–415 (2013).
pubmed: 23869762
pmcid: 6496904
doi: 10.1111/cpr.12042
Xu, K. P., Ding, Y., Ling, J., Dong, Z. & Yu, F. S. X. Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 45, 813–820 (2004).
doi: 10.1167/iovs.03-0851
Wang, L. et al. AREG mediates the epithelial–mesenchymal transition in pancreatic cancer cells via the EGFR/ERK/NF–κB signalling pathway. Oncol. Rep. 43, 1558–1568 (2020).
pubmed: 32323797
pmcid: 7107775
LaVallie, E. R. et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Nat. Biotechnol. 11, 187–193 (1993).
doi: 10.1038/nbt0293-187
Chang, A. Y., Chau, V. W., Landas, J. A. & Yvonne. Preparation of calcium competent Escherichia coli and heat-shock transformation. J. Exp. Microbiol. Immunol. 1, 22–25 (2017).
Bertani, G. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300 (1951).
pubmed: 14888646
pmcid: 386127
doi: 10.1128/jb.62.3.293-300.1951
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
pubmed: 5432063
doi: 10.1038/227680a0
Sambrook, J. & Russel, D, W. Molecular Cloning: A Laboratory Manual. Cold Spring Harboc Laboratory Press 3, (2000).
Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with imageJ. Biophotonics Int. 11, 36–41 (2004).