Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development.


Journal

Cell death and differentiation
ISSN: 1476-5403
Titre abrégé: Cell Death Differ
Pays: England
ID NLM: 9437445

Informations de publication

Date de publication:
08 2022
Historique:
received: 13 04 2021
accepted: 31 01 2022
revised: 17 01 2022
pubmed: 25 3 2022
medline: 5 8 2022
entrez: 24 3 2022
Statut: ppublish

Résumé

Multiciliated cells (MCCs) in the brain reside in the ependyma and the choroid plexus (CP) epithelia. The CP secretes cerebrospinal fluid that circulates within the ventricular system, driven by ependymal cilia movement. Tumors of the CP are rare primary brain neoplasms mostly found in children. CP tumors exist in three forms: CP papilloma (CPP), atypical CPP, and CP carcinoma (CPC). Though CPP and atypical CPP are generally benign and can be resolved by surgery, CPC is a particularly aggressive and little understood cancer with a poor survival rate and a tendency for recurrence and metastasis. In contrast to MCCs in the CP epithelia, CPCs in humans are characterized by solitary cilia, frequent TP53 mutations, and disturbances to multiciliogenesis program directed by the GMNC-MCIDAS transcriptional network. GMNC and MCIDAS are early transcriptional regulators of MCC fate differentiation in diverse tissues. Consistently, components of the GMNC-MCIDAS transcriptional program are expressed during CP development and required for multiciliation in the CP, while CPC driven by deletion of Trp53 and Rb1 in mice exhibits multiciliation defects consequent to deficiencies in the GMNC-MCIDAS program. Previous studies revealed that abnormal NOTCH pathway activation leads to CPP. Here we show that combined defects in NOTCH and Sonic Hedgehog signaling in mice generates tumors that are similar to CPC in humans. NOTCH-driven CP tumors are monociliated, and disruption of the NOTCH complex restores multiciliation and decreases tumor growth. NOTCH suppresses multiciliation in tumor cells by inhibiting the expression of GMNC and MCIDAS, while Gmnc-Mcidas overexpression rescues multiciliation defects and suppresses tumor cell proliferation. Taken together, these findings indicate that reactivation of the GMNC-MCIDAS multiciliogenesis program is critical for inhibiting tumorigenesis in the CP, and it may have therapeutic implications for the treatment of CPC.

Identifiants

pubmed: 35322202
doi: 10.1038/s41418-022-00950-z
pii: 10.1038/s41418-022-00950-z
pmc: PMC9345885
doi:

Substances chimiques

Cell Cycle Proteins 0
Hedgehog Proteins 0
Mcidas protein, mouse 0
Nuclear Proteins 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, N.I.H., Intramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1596-1610

Subventions

Organisme : NIH HHS
ID : S10 OD016167
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM103620
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL110852
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA220551
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS088566
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM103548
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Fame RM, Lehtinen MK. Emergence and developmental roles of the cerebrospinal fluid system. Dev Cell. 2020;52:261–75.
pubmed: 32049038 doi: 10.1016/j.devcel.2020.01.027
Liddelow SA. Development of the choroid plexus and blood-CSF barrier. Front Neurosci. 2015;9:32.
pubmed: 25784848 pmcid: 4347429 doi: 10.3389/fnins.2015.00032
Narita K, Takeda S. Cilia in the choroid plexus: their roles in hydrocephalus and beyond. Front Cell Neurosci. 2015;9:39.
pubmed: 25729351 pmcid: 4325912 doi: 10.3389/fncel.2015.00039
Narita K, Kozuka-Hata H, Nonami Y, Ao-Kondo H, Suzuki T, Nakamura H, et al. Proteomic analysis of multiple primary cilia reveals a novel mode of ciliary development in mammals. Biol Open. 2012;1:815–25.
pubmed: 23213475 pmcid: 3507226 doi: 10.1242/bio.20121081
Nonami Y, Narita K, Nakamura H, Inoue T, Takeda S. Developmental changes in ciliary motility on choroid plexus epithelial cells during the perinatal period. Cytoskeleton. 2013;70:797–803.
pubmed: 23959957 doi: 10.1002/cm.21132
Gozali AE, Britt B, Shane L, Gonzalez I, Gilles F, McComb JG, et al. Choroid plexus tumors; management, outcome, and association with the Li-Fraumeni syndrome: the Children’s Hospital Los Angeles (CHLA) experience, 1991-2010. Pediatr Blood Cancer. 2012;58:905–9.
pubmed: 21990040 doi: 10.1002/pbc.23349
Zaky W, Finlay JL. Pediatric choroid plexus carcinoma: Biologically and clinically in need of new perspectives. Pediatr Blood Cancer. 2018;65:e27031.
pubmed: 29528196 doi: 10.1002/pbc.27031
Shannon ML, Fame RM, Chau KF, Dani N, Calicchio ML, Geleoc GS, et al. Mice expressing Myc in neural precursors develop choroid plexus and ciliary body tumors. Am J Pathol. 2018;188:1334–44.
pubmed: 29545198 pmcid: 5971223 doi: 10.1016/j.ajpath.2018.02.009
El Nagar S, Zindy F, Moens C, Martin L, Plassard D, Roussel MF, et al. A new genetically engineered mouse model of choroid plexus carcinoma. Biochem Biophys Res Commun. 2018;496:568–74.
pubmed: 29339161 pmcid: 5880203 doi: 10.1016/j.bbrc.2017.11.192
Merve A, Zhang X, Pomella N, Acquati S, Hoeck JD, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:95.
pubmed: 31142360 doi: 10.1186/s40478-019-0739-x
Nassar M, Samaha H, Ghabriel M, Yehia M, Taha H, Salem S, et al. LC3A silencing hinders aggresome vimentin cage clearance in primary choroid plexus carcinoma. Sci Rep. 2017;7:8022.
pubmed: 28808307 pmcid: 5556083 doi: 10.1038/s41598-017-07403-5
Amer N, Taha H, Hesham D, Al-Shehaby N, Mosaab A, Soudy M, et al. Aggresomes predict poor outcomes and implicate proteostasis in the pathogenesis of pediatric choroid plexus tumors. J Neuro-Oncol. 2021;152:67–78.
doi: 10.1007/s11060-020-03694-3
Spassky N, Meunier A. The development and functions of multiciliated epithelia. Nat Rev Mol Cell Biol. 2017;18:423–36.
pubmed: 28400610 doi: 10.1038/nrm.2017.21
Lewis M, Stracker TH. Transcriptional regulation of multiciliated cell differentiation. Semin Cell Dev Biol. 2021;110:51–60.
pubmed: 32362381 doi: 10.1016/j.semcdb.2020.04.007
Terre B, Piergiovanni G, Segura-Bayona S, Gil-Gomez G, Youssef SA, Attolini CS, et al. GEMC1 is a critical regulator of multiciliated cell differentiation. EMBO J. 2016;35:942–60.
pubmed: 26933123 pmcid: 5207319 doi: 10.15252/embj.201592821
Kyrousi C, Arbi M, Pilz GA, Pefani DE, Lalioti ME, Ninkovic J, et al. Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development 2015;142:3661–74.
pubmed: 26395491
Lu H, Anujan P, Zhou F, Zhang Y, Chong YL, Bingle CD, et al. Mcidas mutant mice reveal a two-step process for the specification and differentiation of multiciliated cells in mammals. Development. 2019;146:dev172643.
pubmed: 30877126 doi: 10.1242/dev.172643
Arbi M, Pefani DE, Kyrousi C, Lalioti ME, Kalogeropoulou A, Papanastasiou AD, et al. GemC1 controls multiciliogenesis in the airway epithelium. EMBO Rep. 2016;17:400–13.
pubmed: 26882546 pmcid: 4772991 doi: 10.15252/embr.201540882
Zhou F, Narasimhan V, Shboul M, Chong YL, Reversade B, Roy S. Gmnc is a master regulator of the multiciliated cell differentiation program. Curr Biol. 2015;25:3267–73.
pubmed: 26778655 doi: 10.1016/j.cub.2015.10.062
Terre B, Lewis M, Gil-Gomez G, Han Z, Lu H, Aguilera M, et al. Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1-, MCIDAS- or CCNO-deficient mice. Development. 2019;146:dev162628.
pubmed: 30936178 pmcid: 6503982 doi: 10.1242/dev.162628
Tan FE, Vladar EK, Ma L, Fuentealba LC, Hoh R, Espinoza FH, et al. Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development. 2013;140:4277–86.
pubmed: 24048590 pmcid: 3787764 doi: 10.1242/dev.094102
Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun. 2014;5:4418.
pubmed: 25048963 doi: 10.1038/ncomms5418
Ma L, Quigley I, Omran H, Kintner C. Multicilin drives centriole biogenesis via E2f proteins. Genes Dev. 2014;28:1461–71.
pubmed: 24934224 pmcid: 4083089 doi: 10.1101/gad.243832.114
Wallmeier J, Al-Mutairi DA, Chen CT, Loges NT, Pennekamp P, Menchen T, et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet. 2014;46:646–51.
pubmed: 24747639 doi: 10.1038/ng.2961
Lalioti ME, Arbi M, Loukas I, Kaplani K, Kalogeropoulou A, Lokka G, et al. GemC1 governs multiciliogenesis through direct interaction with and transcriptional regulation of p73. J Cell Sci. 2019;67:2360–73.
Wildung M, Esser TU, Grausam KB, Wiedwald C, Volceanov-Hahn L, Riedel D, et al. Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis. Cell Death Differ. 2019;26:2740–57.
pubmed: 31068677 pmcid: 7224178 doi: 10.1038/s41418-019-0332-7
Nemajerova A, Kramer D, Siller SS, Herr C, Shomroni O, Pena T, et al. TAp73 is a central transcriptional regulator of airway multiciliogenesis. Genes Dev. 2016;30:1300–12.
pubmed: 27257214 pmcid: 4911929 doi: 10.1101/gad.279836.116
Marshall CB, Mays DJ, Beeler JS, Rosenbluth JM, Boyd KL, Santos Guasch GL, et al. p73 is required for multiciliogenesis and regulates the Foxj1-associated gene network. Cell Rep. 2016;14:2289–300.
pubmed: 26947080 pmcid: 4794398 doi: 10.1016/j.celrep.2016.02.035
Kyrousi C, Lalioti ME, Skavatsou E, Lygerou Z, Taraviras S. Mcidas and GemC1/Lynkeas specify embryonic radial glial cells. Neurogenesis. 2016;3:e1172747.
pubmed: 27606337 pmcid: 4973585 doi: 10.1080/23262133.2016.1172747
Ortiz-Alvarez G, Daclin M, Shihavuddin A, Lansade P, Fortoul A, Faucourt M, et al. Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the geminin family members. Neuron. 2019;102:159–72 e7.
pubmed: 30824354 pmcid: 6449116 doi: 10.1016/j.neuron.2019.01.051
Lalioti ME, Kaplani K, Lokka G, Georgomanolis T, Kyrousi C, Dong W, et al. GemC1 is a critical switch for neural stem cell generation in the postnatal brain. Glia. 2019;67:2360–73.
pubmed: 31328313 doi: 10.1002/glia.23690
Lun MP, Monuki ES, Lehtinen MK. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci. 2015;16:445–57.
pubmed: 26174708 pmcid: 4629451 doi: 10.1038/nrn3921
Beschorner R, Waidelich J, Trautmann K, Psaras T, Schittenhelm J. Notch receptors in human choroid plexus tumors. Histol Histopathol. 2013;28:1055–63.
pubmed: 23479446
Li L, Grausam KB, Wang J, Lun MP, Ohli J, Lidov HG, et al. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat Cell Biol. 2016;18:418–30.
pubmed: 26999738 pmcid: 4814324 doi: 10.1038/ncb3327
Eberhart C. Multiple cilia suppress tumour formation. Nat Cell Biol. 2016;18:368–9.
pubmed: 27027488 doi: 10.1038/ncb3331
Huang X, Ketova T, Fleming JT, Wang H, Dey SK, Litingtung Y, et al. Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development. 2009;136:2535–43.
pubmed: 19570847 pmcid: 2709062 doi: 10.1242/dev.033795
Merino DM, Shlien A, Villani A, Pienkowska M, Mack S, Ramaswamy V, et al. Molecular characterization of choroid plexus tumors reveals novel clinically relevant subgroups. Clin Cancer Res. 2015;21:184–92.
pubmed: 25336695 doi: 10.1158/1078-0432.CCR-14-1324
Japp AS, Gessi M, Messing-Junger M, Denkhaus D, Zur Muhlen A, Wolff JE, et al. High-resolution genomic analysis does not qualify atypical plexus papilloma as a separate entity among choroid plexus tumors. J Neuropathol Exp Neurol. 2015;74:110–20.
pubmed: 25575132 doi: 10.1097/NEN.0000000000000154
Ruland V, Hartung S, Kordes U, Wolff JE, Paulus W, Hasselblatt M. Choroid plexus carcinomas are characterized by complex chromosomal alterations related to patient age and prognosis. Genes Chromosomes Cancer. 2014;53:373–80.
pubmed: 24478045 doi: 10.1002/gcc.22148
Boskovski MT, Yuan S, Pedersen NB, Goth CK, Makova S, Clausen H, et al. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature. 2013;504:456–9.
pubmed: 24226769 pmcid: 3869867 doi: 10.1038/nature12723
Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ. The roof plate regulates cerebellar cell-type specification and proliferation. Development. 2006;133:2793–804.
pubmed: 16790481 doi: 10.1242/dev.02441
Tabori U, Shlien A, Baskin B, Levitt S, Ray P, Alon N, et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28:1995–2001.
pubmed: 20308654 doi: 10.1200/JCO.2009.26.8169
Tong Y, Merino D, Nimmervoll B, Gupta K, Wang YD, Finkelstein D, et al. Cross-species genomics identifies TAF12, NFYC, and RAD54L as choroid plexus carcinoma oncogenes. Cancer Cell. 2015;27:712–27.
pubmed: 25965574 pmcid: 4458854 doi: 10.1016/j.ccell.2015.04.005
Wang J, Merino DM, Light N, Murphy BL, Wang YD, Guo X, et al. Myc and loss of p53 cooperate to drive formation of choroid plexus carcinoma. Cancer Res. 2019;79:2208–19.
pubmed: 30885981 pmcid: 6497574 doi: 10.1158/0008-5472.CAN-18-2565
Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14:994–1004.
pubmed: 10783170 pmcid: 316543 doi: 10.1101/gad.14.8.994
Murtaugh LC, Stanger BZ, Kwan KM, Melton DA. Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA. 2003;100:14920–5.
pubmed: 14657333 pmcid: 299853 doi: 10.1073/pnas.2436557100
Uhmann A, Dittmann K, Nitzki F, Dressel R, Koleva M, Frommhold A, et al. The Hedgehog receptor Patched controls lymphoid lineage commitment. Blood 2007;110:1814–23.
pubmed: 17536012 doi: 10.1182/blood-2007-02-075648
Astudillo L, Da Silva TG, Wang Z, Han X, Jin K, VanWye J, et al. The small molecule IMR-1 inhibits the notch transcriptional activation complex to suppress tumorigenesis. Cancer Res. 2016;76:3593–603.
pubmed: 27197169 pmcid: 4911243 doi: 10.1158/0008-5472.CAN-16-0061
Chang AC, Fu Y, Garside VC, Niessen K, Chang L, Fuller M, et al. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21:288–300.
pubmed: 21839921 doi: 10.1016/j.devcel.2011.06.022
Crawford JR, Isaacs H Jr. Perinatal (fetal and neonatal) choroid plexus tumors: a review. Childs Nerv Syst. 2019;35:937–44.
pubmed: 30953158 doi: 10.1007/s00381-019-04135-x
Toescu SM, James G, Phipps K, Jeelani O, Thompson D, Hayward R, et al. Intracranial Neoplasms in the First Year of Life: Results of a Third Cohort of Patients From a Single Institution. Neurosurgery. 2019;84:636–46.
pubmed: 29617945 doi: 10.1093/neuros/nyy081
Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, et al. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol. 2009;184:101–12.
pubmed: 19124651 pmcid: 2615087 doi: 10.1083/jcb.200805155
Dave RK, Ellis T, Toumpas MC, Robson JP, Julian E, Adolphe C, et al. Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors. PloS One. 2011;6:e14680.
pubmed: 21379383 pmcid: 3040755 doi: 10.1371/journal.pone.0014680
Ingram WJ, McCue KI, Tran TH, Hallahan AR, Wainwright BJ. Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene. 2008;27:1489–500.
pubmed: 17873912 doi: 10.1038/sj.onc.1210767
Kong JH, Yang L, Dessaud E, Chuang K, Moore DM, Rohatgi R, et al. Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev Cell. 2015;33:373–87.
pubmed: 25936505 pmcid: 4449290 doi: 10.1016/j.devcel.2015.03.005
Stasiulewicz M, Gray SD, Mastromina I, Silva JC, Bjorklund M, Seymour PA, et al. A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo. Development. 2015;142:2291–303.
pubmed: 25995356 pmcid: 4510595
Guseh JS, Bores SA, Stanger BZ, Zhou Q, Anderson WJ, Melton DA, et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development. 2009;136:1751–9.
pubmed: 19369400 pmcid: 2673763 doi: 10.1242/dev.029249
Liu Y, Pathak N, Kramer-Zucker A, Drummond IA. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development. 2007;134:1111–22.
pubmed: 17287248 doi: 10.1242/dev.02806
Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development. 2009;136:2297–307.
pubmed: 19502490 pmcid: 2729343 doi: 10.1242/dev.034884
Morimoto M, Liu Z, Cheng HT, Winters N, Bader D, Kopan R. Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci. 2010;123:213–24.
pubmed: 20048339 pmcid: 2954246 doi: 10.1242/jcs.058669
Deblandre GA, Wettstein DA, Koyano-Nakagawa N, Kintner C. A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development. 1999;126:4715–28.
pubmed: 10518489 doi: 10.1242/dev.126.21.4715
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer (IARC); 2016.
Yaylaoglu MB, Titmus A, Visel A, Alvarez-Bolado G, Thaller C, Eichele G. Comprehensive expression atlas of fibroblast growth factors and their receptors generated by a novel robotic in situ hybridization platform. Dev Dyn. 2005;234:371–86.
pubmed: 16123981 doi: 10.1002/dvdy.20441

Auteurs

Qun Li (Q)

Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China.
Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.

Zhiyuan Han (Z)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Navleen Singh (N)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Berta Terré (B)

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain.
The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.

Ryann M Fame (RM)

Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.

Uzayr Arif (U)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Thomas D Page (TD)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Tasneem Zahran (T)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Ahmed Abdeltawab (A)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Yuan Huang (Y)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Ping Cao (P)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Jun Wang (J)

Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
Explora Biolabs, 11175 Flintkote Avenue, Suite B, San Diego, CA, 92121, USA.

Hao Lu (H)

Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.

Hart G W Lidov (HGW)

Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.

Kameswaran Surendran (K)

Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th Street North, Sioux Falls, SD, 57104, USA.

Lizhao Wu (L)

Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, PR China.

James Q Virga (JQ)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Ying-Tao Zhao (YT)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.

Ulrich Schüller (U)

Research Institute Children's Cancer Center, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

Robert J Wechsler-Reya (RJ)

Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.

Maria K Lehtinen (MK)

Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.

Sudipto Roy (S)

Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.
Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore.
Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.

Zhongmin Liu (Z)

Department of Cardio-vascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China. liu.zhongmin@tongji.edu.cn.
The Institute of Biomedical Engineering & Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China. liu.zhongmin@tongji.edu.cn.

Travis H Stracker (TH)

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain. travis.stracker@nih.gov.
Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA. travis.stracker@nih.gov.

Haotian Zhao (H)

Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA. hzhao10@nyit.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH