The visual encoding of graspable unfamiliar objects.
Journal
Psychological research
ISSN: 1430-2772
Titre abrégé: Psychol Res
Pays: Germany
ID NLM: 0435062
Informations de publication
Date de publication:
Mar 2023
Mar 2023
Historique:
received:
30
07
2021
accepted:
08
03
2022
pubmed:
25
3
2022
medline:
17
2
2023
entrez:
24
3
2022
Statut:
ppublish
Résumé
We explored by eye-tracking the visual encoding modalities of participants (N = 20) involved in a free-observation task in which three repetitions of ten unfamiliar graspable objects were administered. Then, we analysed the temporal allocation (t = 1500 ms) of visual-spatial attention to objects' manipulation (i.e., the part aimed at grasping the object) and functional (i.e., the part aimed at recognizing the function and identity of the object) areas. Within the first 750 ms, participants tended to shift their gaze on the functional areas while decreasing their attention on the manipulation areas. Then, participants reversed this trend, decreasing their visual-spatial attention to the functional areas while fixing the manipulation areas relatively more. Crucially, the global amount of visual-spatial attention for objects' functional areas significantly decreased as an effect of stimuli repetition while remaining stable for the manipulation areas, thus indicating stimulus familiarity effects. These findings support the action reappraisal theoretical approach, which considers object/tool processing as abilities emerging from semantic, technical/mechanical, and sensorimotor knowledge integration.
Identifiants
pubmed: 35322276
doi: 10.1007/s00426-022-01673-z
pii: 10.1007/s00426-022-01673-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
452-461Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Almeida, J., Fintzi, A. R., & Mahon, B. Z. (2013). Tool manipulation knowledge is retrieved by way of the ventral visual object processing pathway. Cortex, 49(9), 2334–2344.
pubmed: 23810714
pmcid: 3795789
doi: 10.1016/j.cortex.2013.05.004
Ambrosini, E., & Costantini, M. (2017). Body posture differentially impacts on visual attention towards tool, graspable, and non-graspable objects. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 360.
pubmed: 27831721
Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., Hämäläinen, M. S., Marinkovic, K., Schacter, D. L., Rosen, B. R., & Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 449–454.
pubmed: 16407167
pmcid: 1326160
doi: 10.1073/pnas.0507062103
Bortoletto, M., & Cunnington, R. (2010). Motor timing and motor sequencing contribute differently to the preparation for voluntary movement. NeuroImage, 49(4), 3338–3348.
pubmed: 19945535
doi: 10.1016/j.neuroimage.2009.11.048
Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability. NeuroImage, 33(2), 430–448.
pubmed: 16949304
doi: 10.1016/j.neuroimage.2006.06.054
Chen, Q., Garcea, F. E., Jacobs, R. A., & Mahon, B. Z. (2018). Abstract representations of object-directed action in the left inferior parietal lobule. Cerebral Cortex, 28(6), 2162–2174.
pubmed: 28605410
doi: 10.1093/cercor/bhx120
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.
doi: 10.4324/9780203771587
Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.
doi: 10.20982/tqmp.01.1.p042
De Bellis, F., Magliacano, A., Sagliano, L., Conson, M., Grossi, D., & Trojano, L. (2020). Left inferior parietal and posterior temporal cortices mediate the effect of action observation on semantic processing of objects: Evidence from rTMS. Psychological Research Psychologische Forschung, 84(4), 1006–1019.
pubmed: 30406828
doi: 10.1007/s00426-018-1117-1
Decroix, J., & Kalénine, S. (2019). What first drives visual attention during the recognition of object-directed actions? The role of kinematics and goal information. Attention, Perception, & Psychophysics, 81(7), 2400–2409.
doi: 10.3758/s13414-019-01784-7
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
pubmed: 17695343
doi: 10.3758/BF03193146
Federico, G., & Brandimonte, M. A. (2019). Tool and object affordances: an ecological eye-tracking study. Brain and Cognition, 135, 103582.
pubmed: 31255885
doi: 10.1016/j.bandc.2019.103582
Federico, G., & Brandimonte, M. A. (2020). Looking to recognise: The pre-eminence of semantic over sensorimotor processing in human tool use. Scientific Reports, 10(1), 1–16.
doi: 10.1038/s41598-020-63045-0
Federico, G., & Brandimonte, M. A. (2022). Il ruolo del ragionamento e dell’elaborazione semantica nell’uso di utensili: La prospettiva integrata dell’action reappraisal. TOPIC-Temi Di Psicologia Dell’ordine Degli Psicologi Della Campania, 1(1), 10–53240.
Federico, G., Ferrante, D., Marcatto, F., & Brandimonte, M. A. (2021a). How the fear of COVID-19 changed the way we look at human faces. PeerJ, 9, e11380.
pubmed: 33987036
pmcid: 8088764
doi: 10.7717/peerj.11380
Federico, G., Osiurak, F., & Brandimonte, M. A. (2021b). Hazardous tools: the emergence of reasoning in human tool use. Psychological Research, 85, 3108–3118. https://doi.org/10.1007/s00426-020-01466-2 .
Federico, G., Osiurak, F., Reynaud, E., & Brandimonte, M. A. (2021c). Semantic congruency effects of prime words on tool visual exploration. Brain and Cognition, 152, 105758.
pubmed: 34102405
doi: 10.1016/j.bandc.2021.105758
Gibson, J. J. (1977). The theory of affordances. Hilldale, USA, 1(2), 67–82.
Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132(6), 1645–1655.
pubmed: 19351777
doi: 10.1093/brain/awp080
Gomez, M. A., Skiba, R. M., & Snow, J. C. (2018). Graspable objects grab attention more than images do. Psychological Science, 29(2), 206–218.
pubmed: 29215960
doi: 10.1177/0956797617730599
Grezes, J., & Decety, J. (2002). Does visual perception of object afford action? Evidence from a Neuroimaging Study. Neuropsychologia, 40(2), 212–222.
pubmed: 11640943
doi: 10.1016/S0028-3932(01)00089-6
Handy, T. C., Grafton, S. T., Shroff, N. M., Ketay, S., & Gazzaniga, M. S. (2003). Graspable objects grab attention when the potential for action is recognized. Nature Neuroscience, 6(4), 421–427.
pubmed: 12640459
doi: 10.1038/nn1031
Horst, J. S., & Hout, M. C. (2016). The Novel Object and Unusual Name (NOUN) Database: A collection of novel images for use in experimental research. Behavior Research Methods, 48(4), 1393–1409.
pubmed: 26424438
doi: 10.3758/s13428-015-0647-3
Humphreys, G. W., Kumar, S., Yoon, E. Y., Wulff, M., Roberts, K. L., & Riddoch, M. J. (2013). Attending to the possibilities of action. Philosophical Transactions of the Royal Society b: Biological Sciences, 368(1628), 20130059.
doi: 10.1098/rstb.2013.0059
Humphreys, G. F., Lambon Ralph, M. A. L., & Simons, J. S. (2021). A unifying account of angular gyrus contributions to episodic and semantic cognition. Trends in Neurosciences., 44, 452–463.
pubmed: 33612312
doi: 10.1016/j.tins.2021.01.006
Ishibashi, R., Pobric, G., Saito, S., & Lambon Ralph, M. A. (2016). The neural network for tool-related cognition: An activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cognitive Neuropsychology, 33(3–4), 241–256.
pubmed: 27362967
pmcid: 4989859
doi: 10.1080/02643294.2016.1188798
Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235.
pubmed: 17475536
doi: 10.1016/j.tics.2007.04.005
Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42–55.
doi: 10.1038/nrn.2016.150
Lesourd, M., Servant, M., Baumard, J., Reynaud, E., Ecochard, C., Medjaoui, F. T., Bartolo, A., & Osiurak, F. (2021). Semantic and action tool knowledge in the brain: identifying common and distinct networks. Neuropsychologia, 159, 107918.
pubmed: 34166668
doi: 10.1016/j.neuropsychologia.2021.107918
Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476–490.
doi: 10.3758/BF03210951
Massen, C., & Prinz, W. (2007). Programming tool-use actions. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 692.
pubmed: 17563230
Masson, M. E., Bub, D. N., & Breuer, A. T. (2011). Priming of reach and grasp actions by handled objects. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1470.
pubmed: 21553988
Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774–785.
pubmed: 18037456
doi: 10.1016/j.neuropsychologia.2007.10.005
Mirman, D. (2014). Growth curve analysis: A hands-on tutorial on using multilevel regression to analyze time course data. In: Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 36, No. 36).
Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2013). Visual and linguistic cues to graspable objects. Experimental Brain Research, 229(4), 545–559.
pubmed: 23820977
doi: 10.1007/s00221-013-3616-z
Naish, K. R., Reader, A. T., Houston-Price, C., Bremner, A. J., & Holmes, N. P. (2013). To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Experimental Brain Research, 225(2), 261–275.
pubmed: 23247469
doi: 10.1007/s00221-012-3367-2
Natraj, N., Pella, Y. M., Borghi, A. M., & Wheaton, L. A. (2015). The visual encoding of tool–object affordances. Neuroscience, 310, 512–527.
pubmed: 26420170
doi: 10.1016/j.neuroscience.2015.09.060
Nicholson, T., Roser, M., & Bach, P. (2017). Understanding the goals of everyday instrumental actions is primarily linked to object, not motor-kinematic, information: Evidence from fMRI. PLoS ONE, 12(1), e0169700.
pubmed: 28081175
pmcid: 5231350
doi: 10.1371/journal.pone.0169700
Osiurak, F., & Badets, A. (2014). Pliers, not fingers: Tool-action effect in a motor intention paradigm. Cognition, 130(1), 66–73.
pubmed: 24184395
doi: 10.1016/j.cognition.2013.09.005
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.
pubmed: 5146491
doi: 10.1016/0028-3932(71)90067-4
Osiurak, F., & Federico, G. (2021). Four ways of (mis-) conceiving embodiment in tool use. Synthese, 199, 3853–3879. https://doi.org/10.1007/s11229-020-02960-1 .
Osiurak, F., Federico, G., Brandimonte, M. A., Reynaud, E., & Lesourd, M. (2020). On the temporal dynamics of tool use. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.579378 .
Osiurak, F., Rossetti, Y., & Badets, A. (2017). What is an affordance? 40 years later. Neuroscience & Biobehavioral Reviews, 77, 403–417.
doi: 10.1016/j.neubiorev.2017.04.014
Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., & Hays, J. (2016). WebGazer: Scalable webcam eye tracking using user interactions. In: Proceedings of the twenty-fifth international joint conference on artificial intelligence-IJCAI 2016.
Pupíková, M., Šimko, P., Gajdoš, M., & Rektorová, I. (2021). Modulation of working memory and resting-state fMRI by tDCS of the right frontoparietal network. Neural Plasticity. https://doi.org/10.1155/2021/5594305
doi: 10.1155/2021/5594305
pubmed: 34349797
pmcid: 8328716
Reynaud, E., Lesourd, M., Navarro, J., & Osiurak, F. (2016). On the neurocognitive origins of human tool use: A critical review of neuroimaging data. Neuroscience & Biobehavioral Reviews, 64, 421–437.
doi: 10.1016/j.neubiorev.2016.03.009
Riddoch, M. J., Humphreys, G. W., Edwards, S., Baker, T., & Willson, K. (2003). Seeing the action: Neuropsychological evidence for action-based effects on object selection. Nature Neuroscience, 6(1), 82–89.
pubmed: 12469129
doi: 10.1038/nn984
Rizzolatti, G., & Matelli, M. (2003). Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research, 153(2), 146–157.
pubmed: 14610633
doi: 10.1007/s00221-003-1588-0
Roberts, K. L., & Humphreys, G. W. (2010). Action relationships concatenate representations of separate objects in the ventral visual system. NeuroImage, 52(4), 1541–1548.
pubmed: 20580845
doi: 10.1016/j.neuroimage.2010.05.044
Rothkegel, L. O., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., & Engbert, R. (2017). Temporal evolution of the central fixation bias in scene viewing. Journal of Vision, 17(13), 3–3.
pubmed: 29094148
doi: 10.1167/17.13.3
Semmelmann, K., & Weigelt, S. (2018). Online webcam-based eye tracking in cognitive science: A first look. Behavior Research Methods, 50(2), 451–465.
pubmed: 28593605
doi: 10.3758/s13428-017-0913-7
Shapiro, L. (2019). Embodied cognition. Routledge.
doi: 10.4324/9781315180380
Tamaki, Y., Nobusako, S., Takamura, Y., Miyawaki, Y., Terada, M., & Morioka, S. (2020). Effects of tool novelty and action demands on gaze searching during tool observation. Frontiers in Psychology, 11, 3060.
doi: 10.3389/fpsyg.2020.587270
Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldassarre, G. (2013). Theories and computational models of affordance and mirror systems: An integrative review. Neuroscience & Biobehavioral Reviews, 37(3), 491–521.
doi: 10.1016/j.neubiorev.2013.01.012
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830.
pubmed: 9627419
Van Der Linden, L., Mathôt, S., & Vitu, F. (2015). The role of object affordances and center of gravity in eye movements toward isolated daily-life objects. Journal of Vision, 15(5), 8–8.
pubmed: 26067526
doi: 10.1167/15.5.8
Van Elk, M., Van Schie, H. T., & Bekkering, H. (2008). Conceptual knowledge for understanding other’s actions is organized primarily around action goals. Experimental Brain Research, 189(1), 99–107.
pubmed: 18521584
pmcid: 2468315
doi: 10.1007/s00221-008-1408-7
Wurm, M. F., & Caramazza, A. (2019). Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language. Nature Communications, 10(1), 1–10.
doi: 10.1038/s41467-018-08084-y