Thyroid tumor ratio: Improving the assessment of the impact of size in pediatric thyroid cancer.
child
risk factors
thyroid cancer
thyroid nodule
thyroidectomy
Journal
Head & neck
ISSN: 1097-0347
Titre abrégé: Head Neck
Pays: United States
ID NLM: 8902541
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
revised:
25
02
2022
received:
25
10
2021
accepted:
03
03
2022
pubmed:
25
3
2022
medline:
6
5
2022
entrez:
24
3
2022
Statut:
ppublish
Résumé
The impact of thyroid nodule size is less useful in children who have smaller thyroid volumes than in adults. We investigate using a novel thyroid tumor ratio measurement in children with thyroid cancer. Patient and pathologic characteristics were investigated via Student's t-test in a univariate analysis for any correlation with the log-transformed tumor ratio, followed by a multivariate linear regression. Of 75 patients with malignancy and tumor ratio information, mean ratio decreased with increasing age (p = 0.04). Out of several clinical factors, patients with lymph node metastases and those treated with postoperative radioactive iodine had significantly higher mean tumor ratios on multivariate analysis (p = 0.04 for both factors). Our study is the first to describe thyroid tumor volume in pediatric thyroid cancer and shows that increased tumor ratio was associated with indicators of more advanced disease such as lymph node metastases and use of radioactive iodine.
Sections du résumé
BACKGROUND
The impact of thyroid nodule size is less useful in children who have smaller thyroid volumes than in adults. We investigate using a novel thyroid tumor ratio measurement in children with thyroid cancer.
METHODS
Patient and pathologic characteristics were investigated via Student's t-test in a univariate analysis for any correlation with the log-transformed tumor ratio, followed by a multivariate linear regression.
RESULTS
Of 75 patients with malignancy and tumor ratio information, mean ratio decreased with increasing age (p = 0.04). Out of several clinical factors, patients with lymph node metastases and those treated with postoperative radioactive iodine had significantly higher mean tumor ratios on multivariate analysis (p = 0.04 for both factors).
CONCLUSIONS
Our study is the first to describe thyroid tumor volume in pediatric thyroid cancer and shows that increased tumor ratio was associated with indicators of more advanced disease such as lymph node metastases and use of radioactive iodine.
Substances chimiques
Iodine Radioisotopes
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1342-1348Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
SEER Cancer Statistics Review, 1975-2018 . SEER. Accessed July 13, 2021. https://seer.cancer.gov/csr/1975_2018/index.html
Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427-453. doi:10.1677/erc.1.00882
Suh J, Choi HS, Kwon A, Chae HW, Kim HS. Adolescents with thyroid nodules: retrospective analysis of factors predicting malignancy. Eur J Pediatr. 2020;179(2):317.
Francis GL, Waguespack SG, Bauer AJ, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716-759. doi:10.1089/thy.2014.0460
Bauer AJ. Thyroid nodules in children and adolescents. Curr Opin Endocrinol Diabetes Obes. 2019;26(5):266-274. doi:10.1097/MED.0000000000000495
Paulson VA, Rudzinski ER, Hawkins DS. Thyroid cancer in the pediatric population. Genes (Basel). 2019;10(9):723. doi:10.3390/genes10090723
Rangel-Pozzo A, Sisdelli L, Cordioli MIV, et al. Genetic landscape of papillary thyroid carcinoma and nuclear architecture: an overview comparing pediatric and adult populations. Cancers (Basel). 2020;12(11):3146. doi:10.3390/cancers12113146
Lee HY, Raphael PD, Park J, Ellerbee AK, Applegate BE, Oghalai JS. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci USA. 2015;112(10):3128-3133. doi:10.1073/pnas.1500038112
Hay ID, Johnson TR, Kaggal S, et al. Papillary thyroid carcinoma (PTC) in children and adults: comparison of initial presentation and long-term postoperative outcome in 4432 patients consecutively treated at the Mayo Clinic during eight decades (1936-2015). World J Surg. 2018;42(2):329-342. doi:10.1007/s00268-017-4279-x
Kamran SC, Marqusee E, Kim MI, et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metabol. 2013;98(2):564-570. doi:10.1210/jc.2012-2968
Wang WH, Xu SY, Zhan WW. Clinicopathologic factors and thyroid nodule sonographic features for predicting central lymph node metastasis in papillary thyroid microcarcinoma. J Ultrasound Med. 2016;35(11):2475-2481. doi:10.7863/ultra.15.10012
Shayganfar A, Hashemi P, Esfahani MM, Ghanei AM, Moghadam NA, Ebrahimian S. Prediction of thyroid nodule malignancy using thyroid imaging reporting and data system (TIRADS) and nodule size. Clin Imaging. 2020;60(2):222-227. doi:10.1016/j.clinimag.2019.10.004
Gutekunst R, Smolarek H, Hasenpusch U, et al. Goitre epidemiology: thyroid volume, iodine excretion, thyroglobulin and thyrotropin in Germany and Sweden. Acta Endocrinol. 1986;112(4):494-501. doi:10.1530/acta.0.1120494
Aydıner Ö, Karakoç Aydıner E, Akpınar İ, Turan S, Bereket A. Normative data of thyroid volume-ultrasonographic evaluation of 422 subjects aged 0-55 years. J Clin Res Pediatr Endocrinol. 2015;7(2):98-101. doi:10.4274/jcrpe.1818
Farahati J, Reiners C, Demidchik EP. Is the UICC/AJCC classification of primary tumor in childhood thyroid carcinoma valid? J Nucl Med. 1999;40(12):2125.
Vaisman F, Corbo R, Vaisman M. Thyroid carcinoma in children and adolescents-systematic review of the literature. J Thyroid Res. 2011;2011:845362. doi:10.4061/2011/845362
Richman DM, Benson CB, Doubilet PM, et al. Thyroid nodules in pediatric patients: sonographic characteristics and likelihood of cancer. Radiology. 2018;288(2):591-599. doi:10.1148/radiol.2018171170
Koltin D, O'Gorman CS, Murphy A, et al. Pediatric thyroid nodules: ultrasonographic characteristics and inter-observer variability in prediction of malignancy. J Pediatr Endocrinol Metabol. 2016;29(7):789-794. doi:10.1515/jpem-2015-0242
Lyshchik A, Drozd V, Demidchik Y, Reiners C. Diagnosis of thyroid cancer in children: value of gray-scale and power Doppler US. Radiology. 2005;235(2):604-613. doi:10.1148/radiol.2352031942
Ahmad H, Al-Hadidi A, Bobbey A, et al. Pediatric adaptions are needed to improve the diagnostic accuracy of thyroid ultrasound using TI-RADS. J Pediatr Surg. 2021;56(6):1120-1125. doi:10.1016/j.jpedsurg.2021.02.034
Richman DM, Benson CB, Doubilet PM, et al. Assessment of American College of Radiology Thyroid Imaging Reporting and Data System (TI-RADS) for pediatric thyroid nodules. Radiology. 2020;294(2):415-420. doi:10.1148/radiol.2019191326
Kim PH, Yoon HM, Hwang J, et al. Diagnostic performance of adult-based ATA and ACR-TIRADS ultrasound risk stratification systems in pediatric thyroid nodules: a systematic review and meta-analysis. Eur Radiol. 2021;31(10):7450-7463. doi:10.1007/s00330-021-07908-8
WHO. The WHO Child Growth Standards. WHO; 2006. http://www.who.int/childgrowth/standards/en/. Accessed July 14, 2020.
Cavallo A, Johnson DN, White MG, et al. Thyroid nodule size at ultrasound as a predictor of malignancy and final pathologic size. Thyroid. 2017;27(5):641-650. doi:10.1089/thy.2016.0336
Kim BK, Choi YS, Oak CH, et al. Determination of thyroid volume by ultrasonography among schoolchildren in Philippines. Int J Endocrinol. 2012;2012:e387971. doi:10.1155/2012/387971
Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208. doi:10.1016/j.jbi.2019.103208
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research Electronic Data Capture (REDCap)-a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-381. doi:10.1016/j.jbi.2008.08.010
Tukey JW. On the comparative anatomy of transformations. Ann Math Stat. 1957;28(3):602-632.
Rousseeuw PJ, Hubert M. Robust statistics for outlier detection. WIREs Data Min Knowl Discov. 2011;1(1):73-79. doi:10.1002/widm.2
Wassner AJ, Della Vecchia M, Jarolim P, Feldman HA, Huang SA. Prevalence and significance of thyroglobulin antibodies in pediatric thyroid cancer. J Clin Endocrinol Metab. 2017;102(9):3146-3153. doi:10.1210/jc.2017-00286
Kim ES, Lim DJ, Baek KH, et al. Thyroglobulin antibody is associated with increased cancer risk in thyroid nodules. Thyroid. 2010;20(8):885-891. doi:10.1089/thy.2009.0384
James B, Grogan RH, Kaplan EL, Angelos P. Prophylactic versus selective central neck dissection in pediatric papillary thyroid cancer. In: Angelos P, Grogan RH, eds. Difficult Decisions in Endocrine Surgery: An Evidence-Based Approach. Springer; 2018:153-162. doi:10.1007/978-3-319-92860-9_14
Goldfarb M, Gondek SS, Sanchez Y, Lew JI. Clinic-based ultrasound can predict malignancy in pediatric thyroid nodules. Thyroid. 2012;22(8):827-831. doi:10.1089/thy.2011.0494
Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White paper of the ACR TI-RADS Committee. J Am Coll Radiol. 2017;14(5):587-595. doi:10.1016/j.jacr.2017.01.046