Forest disturbances and climate constrain carbon allocation dynamics in trees.

carbon dynamics carbon partitioning carbon sink dendroecological plots global change vegetation models

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
07 2022
Historique:
received: 24 01 2022
accepted: 19 03 2022
pubmed: 25 3 2022
medline: 18 6 2022
entrez: 24 3 2022
Statut: ppublish

Résumé

Forest disturbances such as drought, fire, and logging affect the forest carbon dynamics and the terrestrial carbon sink. Forest mortality after disturbances creates uncertainties that need to be accounted for to understand forest dynamics and their associated C-sink. We combined data from permanent resampling plots and biomass oriented dendroecological plots to estimate time series of annual woody biomass growth (ABI) in several forests. ABI time series were used to benchmark a vegetation model to analyze dynamics in forest productivity and carbon allocation forced by environmental variability. The model implements source and sink limitations explicitly by dynamically constraining carbon allocation of assimilated photosynthates as a function of temperature and moisture. Bias in tree-ring reconstructed ABI increased back in time from data collection and with increasing disturbance intensity. ABI bias ranged from zero, in open stands without recorded mortality, to over 100% in stands with major disturbances such as thinning or snowstorms. Stand leaf area was still lower than in control plots decades after heavy thinning. Disturbances, species life-history strategy and climatic variability affected carbon-partitioning patterns in trees. Resprouting broadleaves reached maximum biomass growth at earlier ages than nonresprouting conifers. Environmental variability and leaf area explained much variability in woody biomass allocation. Effects of stand competition on C-allocation were mediated by changes in stand leaf area except after major disturbances. Divergence between tree-ring estimated and simulated ABI were caused by unaccounted changes in allocation or misrepresentation of some functional process independently of the model calibration approach. Higher disturbance intensity produced greater modifications of the C-allocation pattern, increasing error in reconstructed biomass dynamics. Legacy effects from disturbances decreased model performance and reduce the potential use of ABI as a proxy to net primary productivity. Trait-based dynamics of C-allocation in response to environmental variability need to be refined in vegetation models.

Identifiants

pubmed: 35322511
doi: 10.1111/gcb.16172
pmc: PMC9541293
doi:

Substances chimiques

Carbon 7440-44-0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4342-4358

Informations de copyright

© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Références

New Phytol. 2013 Sep;199(4):981-990
pubmed: 23734960
New Phytol. 2019 Aug;223(3):1204-1216
pubmed: 31077588
Nat Commun. 2019 Feb 14;10(1):454
pubmed: 30765702
Trends Ecol Evol. 2018 Jan;33(1):15-27
pubmed: 29146414
New Phytol. 2015 Apr;206(2):583-9
pubmed: 27283977
Glob Chang Biol. 2019 Sep;25(9):2978-2992
pubmed: 31132225
Science. 2020 May 29;368(6494):
pubmed: 32467364
Nat Plants. 2020 May;6(5):444-453
pubmed: 32393882
New Phytol. 2017 Apr;214(1):180-193
pubmed: 27883190
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3280-5
pubmed: 24344265
New Phytol. 2021 Mar;229(6):3065-3087
pubmed: 33207007
Oecologia. 2011 Feb;165(2):533-44
pubmed: 21104278
New Phytol. 2010 Oct;188(1):175-86
pubmed: 20618918
New Phytol. 2017 Mar;213(4):1654-1666
pubmed: 28164338
Glob Chang Biol. 2018 Sep;24(9):4293-4303
pubmed: 29758588
Glob Chang Biol. 2017 Jul;23(7):2915-2927
pubmed: 27976473
Glob Ecol Biogeogr. 2020 Dec;29(12):2082-2096
pubmed: 33380902
New Phytol. 2020 Aug;227(4):1081-1096
pubmed: 32259280
Ecol Lett. 2011 Aug;14(8):816-27
pubmed: 21679289
J Plant Physiol. 2016 Sep 20;203:3-15
pubmed: 27233774
New Phytol. 2018 Sep;219(4):1188-1193
pubmed: 29767850
New Phytol. 2020 Dec;228(6):1728-1733
pubmed: 31912504
Trends Ecol Evol. 2018 Apr;33(4):251-259
pubmed: 29477443
Glob Chang Biol. 2019 Oct;25(10):3395-3405
pubmed: 31070834
Tree Physiol. 2002 Sep;22(13):891-905
pubmed: 12204846
Glob Chang Biol. 2022 Apr;28(7):2442-2460
pubmed: 35023229
Glob Chang Biol. 2015 Jun;21(6):2283-95
pubmed: 25640987
Ecol Lett. 2011 May;14(5):522-36
pubmed: 21366814
Nature. 2021 Mar;591(7851):599-603
pubmed: 33762765
New Phytol. 2021 Jun;230(6):2226-2245
pubmed: 33521942
Glob Chang Biol. 2018 Aug;24(8):3587-3602
pubmed: 29520931
Science. 2020 Jun 19;368(6497):
pubmed: 32554569
Glob Chang Biol. 2019 Dec;25(12):4008-4021
pubmed: 31465580
Trends Plant Sci. 2013 Jan;18(1):11-7
pubmed: 22960000
New Phytol. 2020 Dec;228(6):1704-1709
pubmed: 32452535
New Phytol. 2019 Jan;221(2):652-668
pubmed: 30339280
Glob Chang Biol. 2021 Sep;27(18):4403-4419
pubmed: 34166562
Curr Opin Plant Biol. 2015 Jun;25:107-14
pubmed: 26037389
New Phytol. 2021 Sep;231(6):2118-2124
pubmed: 34101183
New Phytol. 2020 Jun;226(6):1535-1538
pubmed: 32259286
Tree Physiol. 2019 Dec 1;39(12):1937-1960
pubmed: 31748793
Glob Chang Biol. 2015 Oct;21(10):3675-84
pubmed: 26136379
New Phytol. 2021 Mar;229(5):2413-2445
pubmed: 32789857
Front Plant Sci. 2017 Mar 21;8:182
pubmed: 28377773
Nature. 2014 Mar 6;507(7490):90-3
pubmed: 24429523
Tree Physiol. 2017 Nov 1;37(11):1478-1492
pubmed: 29040771
Oecologia. 2014 May;175(1):363-74
pubmed: 24442595
Glob Chang Biol. 2017 Jun;23(6):2370-2382
pubmed: 27935165
New Phytol. 2016 Feb;209(3):945-54
pubmed: 26443127
Glob Chang Biol. 2016 Jun;22(6):2138-51
pubmed: 26717889
Trends Ecol Evol. 2001 Jan 1;16(1):45-51
pubmed: 11146144
Nature. 2018 Jun;558(7711):531-539
pubmed: 29950621
Glob Chang Biol. 2018 Jul;24(7):2913-2928
pubmed: 29364562
New Phytol. 2017 Apr;214(1):41-47
pubmed: 28001290
Ecol Lett. 2018 Oct;21(10):1552-1560
pubmed: 30125446
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25734-25744
pubmed: 31767760
Planta. 1980 Jun;149(1):78-90
pubmed: 24306196
Trends Plant Sci. 2018 Nov;23(11):985-993
pubmed: 30166058
New Phytol. 2021 Aug;231(4):1318-1337
pubmed: 33305422
Ann Bot. 2018 Apr 18;121(5):773-795
pubmed: 29370362
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13721-6
pubmed: 25225412
Trends Plant Sci. 2018 Nov;23(11):1006-1015
pubmed: 30209023
Glob Chang Biol. 2014 Dec;20(12):3600-9
pubmed: 24890749
Nat Commun. 2020 Sep 8;11(1):4241
pubmed: 32901006
New Phytol. 2015 Apr;206(2):647-59
pubmed: 25616175
Glob Chang Biol. 2022 Jul;28(14):4342-4358
pubmed: 35322511
Trends Ecol Evol. 2020 Dec;35(12):1110-1118
pubmed: 32928565
Science. 2020 Apr 17;368(6488):261-266
pubmed: 32299945
Trends Plant Sci. 2021 Mar;26(3):210-219
pubmed: 33168468
Nat Clim Chang. 2017 Jun;7:395-402
pubmed: 28861124
Nature. 2020 Apr;580(7802):227-231
pubmed: 32269351

Auteurs

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Biomass Lignin Wood Populus Microscopy, Electron, Scanning
1.00
Wildfires Humans Australia Forests Indigenous Peoples

Classifications MeSH