Comparison of ultrashort pulse ablation of gold in air and water by time-resolved experiments.


Journal

Light, science & applications
ISSN: 2047-7538
Titre abrégé: Light Sci Appl
Pays: England
ID NLM: 101610753

Informations de publication

Date de publication:
23 Mar 2022
Historique:
received: 27 10 2021
accepted: 22 02 2022
revised: 31 01 2022
entrez: 24 3 2022
pubmed: 25 3 2022
medline: 25 3 2022
Statut: epublish

Résumé

Laser ablation in liquids is a highly interdisciplinary method at the intersection of physics and chemistry that offers the unique opportunity to generate surfactant-free and stable nanoparticles from virtually any material. Over the last decades, numerous experimental and computational studies aimed to reveal the transient processes governing laser ablation in liquids. Most experimental studies investigated the involved processes on timescales ranging from nanoseconds to microseconds. However, the ablation dynamics occurring on a sub-nanosecond timescale are of fundamental importance, as the conditions under which nanoparticles are generated are established within this timeframe. Furthermore, experimental investigations of the early timescales are required to test computational predictions. We visualize the complete spatiotemporal picosecond laser-induced ablation dynamics of gold immersed in air and water using ultrafast pump-probe microscopy. Transient reflectivity measurements reveal that the water confinement layer significantly influences the ablation dynamics on the entire investigated timescale from picoseconds to microseconds. The influence of the water confinement layer includes the electron injection and subsequent formation of a dense plasma on a picosecond timescale, the confinement of ablation products within hundreds of picoseconds, and the generation of a cavitation bubble on a nanosecond timescale. Moreover, we are able to locate the temporal appearance of secondary nanoparticles at about 600 ps after pulse impact. The results support computational predictions and provide valuable insight into the early-stage ablation dynamics governing laser ablation in liquids.

Identifiants

pubmed: 35322802
doi: 10.1038/s41377-022-00751-6
pii: 10.1038/s41377-022-00751-6
pmc: PMC8943017
doi:

Types de publication

Journal Article

Langues

eng

Pagination

68

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : HU 1893/6-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : HU 1893/5-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GO 2566/7-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GO 2566/8-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GO 2566/10-1

Informations de copyright

© 2022. The Author(s).

Références

Amans, D., Cai, W. P. & Barcikowski, S. Status and demand of research to bring laser generation of nanoparticles in liquids to maturity. Appl. Surf. Sci. 488, 445–454 (2019).
doi: 10.1016/j.apsusc.2019.05.117
Zhang, D. S., Gökce, B. & Barcikowski, S. Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017).
doi: 10.1021/acs.chemrev.6b00468
Reichenberger, S. et al. Perspective of surfactant-free colloidal nanoparticles in heterogeneous catalysis. ChemCatChem 11, 4489–4518 (2019).
doi: 10.1002/cctc.201900666
Hupfeld, T. et al. Plasmonic seasoning: giving color to desktop laser 3D printed polymers by highly dispersed nanoparticles. Adv. Optical Mater. 8, 2000473 (2020).
doi: 10.1002/adom.202000473
Naddeo, J. J. et al. Antibacterial properties of nanoparticles: a comparative review of chemically synthesized and laser-generated particles. Adv. Sci., Eng. Med. 7, 1044–1057 (2015).
doi: 10.1166/asem.2015.1811
Herrera, G. M., Padilla, A. C. & Hernandez-Rivera, S. P. Surface enhanced raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation. Nanomaterials 3, 158–172 (2013).
doi: 10.3390/nano3010158
Petridis, C. et al. Laser generated nanoparticles based photovoltaics. J. Colloid Interface Sci. 489, 28–37 (2017).
doi: 10.1016/j.jcis.2016.09.065
Amendola, V. et al. Surface plasmon resonance in gold nanoparticles: a review. J. Phys.: Condens. Matter 29, 203002 (2017).
Bailly, A. L. et al. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep. 9, 12890 (2019).
doi: 10.1038/s41598-019-48748-3
Kanitz, A. et al. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci. Technol. 28, 103001 (2019).
doi: 10.1088/1361-6595/ab3dbe
Dittrich, S., Barcikowski, S. & Gökce, B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electron. Adv. 4, 200072 (2021).
doi: 10.29026/oea.2021.200072
Sakka, T., Saito, K. & Ogata, Y. H. Confinement effect of laser ablation plume in liquids probed by self-absorption of C
doi: 10.1063/1.1828214
Tomko, J. et al. Cavitation bubble dynamics and nanoparticle size distributions in laser ablation in liquids. Colloids Surf. A: Physicochem. Eng. Asp. 522, 368–372 (2017).
doi: 10.1016/j.colsurfa.2017.03.030
Long, J. et al. Early dynamics of cavitation bubbles generated during ns laser ablation of submerged targets. Opt. Express 28, 14300–14309 (2020).
doi: 10.1364/OE.391584
Reich, S. et al. Early appearance of crystalline nanoparticles in pulsed laser ablation in liquids dynamics. Nanoscale 11, 6962–6969 (2019).
doi: 10.1039/C9NR01203F
Shih, C. Y. et al. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10, 6900–6910 (2018).
doi: 10.1039/C7NR08614H
Inogamov, N. A., Zhakhovskii, V. V. & Khokhlov, V. A. Dynamics of gold ablation into water. J. Exp. Theor. Phys. 127, 79–106 (2018).
doi: 10.1134/S1063776118070075
Amendola, V. et al. Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem. – A Eur. J. 26, 9206–9242 (2020).
doi: 10.1002/chem.202000686
Kanitz, A. et al. Pump-probe microscopy of femtosecond laser ablation in air and liquids. Appl. Surf. Sci. 475, 204–210 (2019).
doi: 10.1016/j.apsusc.2018.12.184
Blumenstein, A. et al. Transient optics of gold during laser irradiation: from first principles to experiment. Phys. Rev. B 101, 165140 (2020).
doi: 10.1103/PhysRevB.101.165140
Vogel, A. et al. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, 271–280 (1999).
doi: 10.1007/s003400050617
Saraeva, I. N. et al. Effect of fs/ps laser pulse width on ablation of metals and silicon in air and liquids, and on their nanoparticle yields. Appl. Surf. Sci. 470, 1018–1034 (2019).
doi: 10.1016/j.apsusc.2018.11.199
Doñate-Buendía, C. et al. Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing. Photonics Res. 7, 1249–1257 (2019).
doi: 10.1364/PRJ.7.001249
Dittrich, S. et al. Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air. Appl. Phys. A 125, 432 (2019).
doi: 10.1007/s00339-019-2704-8
Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).
doi: 10.1103/PhysRevB.6.4370
Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973).
doi: 10.1364/AO.12.000555
Shih, C. Y. et al. Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles. Nanoscale 12, 7674–7687 (2020).
doi: 10.1039/D0NR00269K
Hohlfeld, J. et al. Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237–258 (2000).
doi: 10.1016/S0301-0104(99)00330-4
Winter, J. et al. Ultrafast laser processing of copper: a comparative study of experimental and simulated transient optical properties. Appl. Surf. Sci. 417, 2–15 (2017).
doi: 10.1016/j.apsusc.2017.02.070
Rethfeld, B. et al. Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002).
doi: 10.1103/PhysRevB.65.092103
Krishnan, S. et al. Emissivities and optical constants of electromagnetically levitated liquid metals as functions of temperature and wavelength. in Materials Chemistry at High Temperatures (ed. Hastie, J. W.) 143–164 (Humana Press, 1990). https://doi.org/10.1007/978-1-4612-0481-7_11 .
Zhigilei, L. V., Lin, Z. B. & Ivanov, D. S. Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C. 113, 11892–11906 (2009).
doi: 10.1021/jp902294m
Noack, J. & Vogel, A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quantum Electron. 35, 1156–1167 (1999).
doi: 10.1109/3.777215
Zilio, P. et al. Hot electrons in water: injection and ponderomotive acceleration by means of plasmonic nanoelectrodes. Light.: Sci. Appl. 6, e17002 (2017).
doi: 10.1038/lsa.2017.2
Musumeci, F. & Pollack, G. H. Influence of water on the work function of certain metals. Chem. Phys. Lett. 536, 65–67 (2012).
doi: 10.1016/j.cplett.2012.03.094
Du, G. Q. et al. Insight into the thermionic emission regimes under gold film thermal relaxation excited by a femtosecond pulse. Appl. Surf. Sci. 257, 9177–9182 (2011).
doi: 10.1016/j.apsusc.2011.05.128
Riffe, D. M. et al. Femtosecond thermionic emission from metals in the space-charge-limited regime. J. Optical Soc. Am. B 10, 1424–1435 (1993).
doi: 10.1364/JOSAB.10.001424
Bechtel, J. H., Smith, W. L. & Bloembergen, N. Four-photon photoemission from tungsten. Opt. Commun. 13, 56–59 (1975).
doi: 10.1016/0030-4018(75)90156-X
Kennedy, P. K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE J. Quantum Electron. 31, 2241–2249 (1995).
doi: 10.1109/3.477753
Povarnitsyn, M. E. et al. A wide-range model for simulation of pump-probe experiments with metals. Appl. Surf. Sci. 258, 9480–9483 (2012).
doi: 10.1016/j.apsusc.2011.07.017
Kanitz, A. et al. Impact of liquid environment on femtosecond laser ablation. Appl. Phys. A 123, 674 (2017).
doi: 10.1007/s00339-017-1280-z
Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105, 355–390 (2005).
doi: 10.1021/cr030453x
Pan, C. J. et al. Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation. Light.: Sci. Appl. 9, 80 (2020).
doi: 10.1038/s41377-020-0318-8
Hohlfeld, J. et al. Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness. Appl. Phys. B 64, 387–390 (1997).
doi: 10.1007/s003400050189
Carrasco-García, I., Vadillo, J. M. & Laserna, J. J. Monitoring the dynamics of the surface deformation prior to the onset of plasma emission during femtosecond laser ablation of noble metals by time-resolved reflectivity microscopy. Spectrochimica Acta Part B: At. Spectrosc. 131, 1–7 (2017).
doi: 10.1016/j.sab.2017.02.014
Demaske, B. J. et al. Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B 82, 064113 (2010).
doi: 10.1103/PhysRevB.82.064113
Bulgakova, N. M. & Bulgakov, A. V. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl. Phys. A 73, 199–208 (2001).
doi: 10.1007/s003390000686
Kumar, B., Yadav, D. & Thareja, R. K. Growth dynamics of nanoparticles in laser produced plasma in liquid ambient. J. Appl. Phys. 110, 074903 (2011).
doi: 10.1063/1.3642968
Winter, J. et al. Ultrafast pump-probe ellipsometry and microscopy reveal the surface dynamics of femtosecond laser ablation of aluminium and stainless steel. Appl. Surf. Sci. 511, 145514 (2020).
doi: 10.1016/j.apsusc.2020.145514
Yen, Y. T. et al. Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films. ACS Appl. Mater. Interfaces 6, 4292–4300 (2014).
doi: 10.1021/am406048s
Jain, P. K., Huang, W. Y. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).
doi: 10.1021/nl071008a
Hu, H. F., Liu, T. G. & Zhai, H. C. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis. Opt. Express 23, 628–635 (2015).
doi: 10.1364/OE.23.000628
Bergström, D., Powell, J. & Kaplan, A. F. H. The absorption of light by rough metal surfaces—a three-dimensional ray-tracing analysis. J. Appl. Phys. 103, 103515 (2008).
doi: 10.1063/1.2930808
Dittrich, S. et al. Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids. Opto-Electron. Adv. 5, 210053 (2022).
doi: 10.29026/oea.2022.210053
Hoppius, J. S. et al. Optimization of femtosecond laser processing in liquids. Appl. Surf. Sci. 467-468, 255–260 (2019).
doi: 10.1016/j.apsusc.2018.10.121
Rapp, S. et al. Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation. Opt. Express 24, 17572–17592 (2016).
doi: 10.1364/OE.24.017572

Auteurs

Maximilian Spellauge (M)

Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Lothstraße 34, 80335, Munich, Germany.
Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany.

Carlos Doñate-Buendía (C)

Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany.
Materials Science and Additive Manufacturing, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, 42119, Wuppertal, Germany.

Stephan Barcikowski (S)

Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany.

Bilal Gökce (B)

Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany. goekce@uni-wuppertal.de.
Materials Science and Additive Manufacturing, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, 42119, Wuppertal, Germany. goekce@uni-wuppertal.de.

Heinz P Huber (HP)

Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Lothstraße 34, 80335, Munich, Germany. heinz.huber@hm.edu.

Classifications MeSH