Noises investigations and image denoising in femtosecond stimulated Raman scattering microscopy.

Raman microscopy microscopy optics relative intensity noise stimulated Raman scattering microscopy

Journal

Journal of biophotonics
ISSN: 1864-0648
Titre abrégé: J Biophotonics
Pays: Germany
ID NLM: 101318567

Informations de publication

Date de publication:
06 2022
Historique:
revised: 12 03 2022
received: 11 12 2021
accepted: 21 03 2022
pubmed: 25 3 2022
medline: 7 6 2022
entrez: 24 3 2022
Statut: ppublish

Résumé

In the literature of SRS microscopy, the hardware characterization usually remains separate from the image processing. In this article, we consider both these aspects and statistical properties analysis of image noise, which plays the vital role of joining links between them. Firstly, we perform hardware characterization by systematic measurements of noise sources, demonstrating that our in-house built microscope is shot noise limited. Secondly, we analyze the statistical properties of the overall image noise, and we prove that the noise distribution can be dependent on image direction, whose origin is the use of a lock-in time constant longer than pixel dwell time. Finally, we compare the performances of two widespread general algorithms, that is, singular value decomposition and discrete wavelet transform, with a method, that is, singular spectrum analysis (SSA), which has been adapted for stimulated Raman scattering images. In order to validate our algorithms, in our investigations lipids droplets have been used and we demonstrate that the adapted SSA method provides an improvement in image denoising.

Identifiants

pubmed: 35324074
doi: 10.1002/jbio.202100379
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202100379

Informations de copyright

© 2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.

Références

O. Svelto, D. C. Hanna, Principles of Lasers, Springer, New York, NY 2010.
S. Donati, Photodetectors: Devices, Circuits and Applications, 2nd ed., Wiley-IEEE Press, Hoboken, NJ 2000.
M. Flower (Ed.), Webb's Physics of Medical Imaging, 2nd ed., CRC Press, Boca Raton 2012. https://doi.org/10.1201/b12218.
R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd ed., Prentice-Hall, Inc, Upper Saddle River, NJ 2002.
M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis and Machine Vision, 4th ed., Cengage Learning, Boston, MA 2015.
B. Z. Haq, J. B. Chowdhry, Eur. Biophys. J. 1997, 26, 419.
S. K. Mohideen, S. A. Perumal, M. M. Sathik, Int. J. Netw. Secur. 2008, 8, 213.
P. Pradhan, S. Guo, O. Ryabchykov, J. Popp, T. Bocklitz, J. Biophotonics 2020, 13, e201960186.
Y. R. Shen, N. Bloembergen, Phys. Rev. 1965, 137, A1787.
N. Bloembergen, Am. J. Phys. 1967, 35, 989.
J. X. Cheng, X. S. Xie (Eds), Coherent Raman Scattering Microscopy, CRC Press, Boca Raton 2012. https://doi.org/10.1201/b12907.
R. C. Prince, R. R. Frontiera, E. O. Potma, Chem. Rev. 2017, 117(7), 5070. https://doi.org/10.1021/acs.chemrev.6b00545.
L. Sirleto, M. A. Ferrara, T. Nikitin, S. Novikov, L. Khriachtchev, Nat. Commun. 2012, 3, 1. https://doi.org/10.1038/ncomms2188.
L. Sirleto, A. Vergara, M. A. Ferrara, Adv. Opt. Photon. 2017, 9, 169.
M. A. Ferrara, L. Sirleto, G. Nicotra, C. Spinella, I. Rendina, Photonics Nanostruct.: Fundam. Appl. 2011, 9, 1.
L. Sirleto, A. Aronne, M. Gioffrè, E. Fanelli, G. C. Righini, P. Pernice, A. Vergara, Opt. Mater. 2013, 36, 408. https://doi.org/10.1016/j.optmat.2013.10.001.
A. M. Streets, A. Li, T. Chen, Y. Huang, Anal. Chem. 2014, 86, 8506. https://doi.org/10.1021/ac5013706.
J. X. Cheng, X. S. Xie, Science 2015, 350(6264), aaa8870. https://doi.org/10.1126/science.aaa8870.
C. H. Camp Jr., M. T. Cicerone, Nat. Photonics 2015, 9(5), 295. https://doi.org/10.1038/nphoton.2015.60.
C. Zhang, D. Zhang, J.-X. Cheng, Annu. Rev. Biomed. Eng. 2015, 17, 415.
A. Owyoung, Opt. Lett. 1978, 2(4), 91.
J. P. Heritage, D. L. Allara, Chem. Phys. Lett. 1980, 74(3), 507.
B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum. Electron. 1979, QE-15, 1418.
A. Owyoung, IEEE J. Quantum. Electron. 1978, QE-14, 192.
D. Dietze, R. Mathies, ChemPhysChem 2016, 17, 1224.
G. Batignani, C. Ferrante, T. Scopigno, J. Phys. Chem. Lett. 2020, 11, 7805.
Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, K. Itoh, Opt. Express 2009, 17, 3651.
Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. S. Kajiyama, K. Fukui, K. Itoh, Opt. Express 2010, 18, 13708.
X. Audier, S. Heuke, P. Volz, I. Rimke, H. Rigneault, APL Photonics 2020, 5, 011101. https://doi.org/10.1063/1.5129212.
M. J. B. Moester, F. Ariese, J. F. de Boer, J. Eur. Opt. Soc.: Rapid Publ. 2015, 10, 15022.
K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, K. Itoh, Opt. Express 2012, 20(13), 13958. https://doi.org/10.1364/OE.20.013958.
L. Zada, B. Fokker, H. A. Leslie, A. D. Vethaak, J. F. de Boer, F. Ariese, J. Eur. Opt. Soc.: Rapid Publ. 2021, 17, 10. https://doi.org/10.1186/s41476-021-00155-w.
C. S. Liao, J. H. Choi, D. Zhang, S. H. Chan, J. X. Cheng, J. Phys. Chem. C 2015, 119, 19397.
Y. Li, B. Shen, G. Zou, S. Wang, Q. Junle, R. Hu, L. Liu, J. Biophotonics 2021, 14(8), e202100080. https://doi.org/10.1002/jbio.202100080.
B. Manifold, E. Thomas, A. T. Francis, A. H. Hill, F. Dan, Biomed. Opt. Express 2019, 10(8), 3860. https://doi.org/10.1364/BOE.10.003860.
P. Abdolghader, A. Ridsdale, T. Grammatikopoulos, G. Resch, F. Légaré, A. Stolow, A. F. Pegoraro, I. Tamblyn, Opt. Express 2021, 29(21), 34205. https://doi.org/10.1364/OE.439662.
H. Lin, H. J. Lee, N. Tague, J. B. Lugagne, C. Zong, F. Deng, J. Shin, L. Tian, W. Wong, M. J. Dunlop, J. X. Cheng, Nat. Commun. 2021, 12, 3052. https://doi.org/10.1038/s41467-021-23202-z.
N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure: SSA and Related Techniques, Chapman & Hall, New York, NY 2001.
A. M. Tomé, D. Malafaia, A. R. Teixeira, E. W. Lang, On the use of singular spectrum analysis. arXiv:1807.10679 2018, 1.
A. D'Arco, N. Brancati, M. A. Ferrara, M. Indolfi, M. Frucci, L. Sirleto, Opt. Express 2016, 7(5), 1853. https://doi.org/10.1364/BOE.7.001853.
A. D'Arco, M. A. Ferrara, M. Indolfi, V. Tufano, L. Sirleto, J. Nonlinear Opt. Phys. Mater. 2017, 26(4), 1750052. https://doi.org/10.1142/S0218863517500527.
R. Ranjan, A. D'Arco, M. A. Ferrara, M. Indolfi, M. Larobina, L. Sirleto, Opt. Exp. 2018, 26(20), 26317.
R. Ranjan, M. Indolfi, M. A. Ferrara, L. Sirleto, J. Vis. Exp. 2019, (149), e59614. https://doi.org/10.3791/59614.
M. A. Ferrara, A. Filograna, R. Ranjan, D. Corda, C. Valente, L. Sirleto, PLoS ONE 2019, 14(5), e0216811. https://doi.org/10.1371/journal.pone.0216811.
R. Ranjan, M. A. Ferrara, A. Filograna, C. Valente, L. Sirleto, J. Instrum. 2019, 14, P09008. https://doi.org/10.1088/1748-0221/14/09/P09008.
L. Sirleto, R. Ranjan, M. A. Ferrara, Appl. Sci. 2021, 11, 3903. https://doi.org/10.3390/app11093903.
J. Kim, Y. Song, Adv. Opt. Photonics 2016, 8(3), 465. https://doi.org/10.1364/AOP.8.000465.
D. von der Linde, Appl. Phys. B 1986, 39, 201.
G. E. P. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, CA 1970.
G. M. Ljung, G. E. P. Box, Biometrika 1978, 65(2), 297.
F. W. Scholz, M. A. Stephens, K-sample Anderson-Darling tests of fit, for continuous and discrete cases, Technical Report, No. 81, May 1986, Department of Statistics GN-22, University of Washington, Seattle, WA 1927.
Lock-in Amplifier Model SR844 RF Stanford Research Systems. User's Manual
Q. Wu, F. A. Merchant, K. R. Castleman, (Eds,). Microscope Image Processing, Elsevier-Academic Press, Cambridge, MA 2008. https://doi.org/10.1016/B978-0-12-372578-3.00001-5.

Auteurs

Rajeev Ranjan (R)

National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy.
Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA.

Giovanni Costa (G)

National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy.
Department of Electrical Engineering and Information Technologies (DIETI), University "Federico II" of Naples, Naples, Italy.

Maria Antonietta Ferrara (MA)

National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy.

Mario Sansone (M)

Department of Electrical Engineering and Information Technologies (DIETI), University "Federico II" of Naples, Naples, Italy.

Luigi Sirleto (L)

National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Cephalometry Humans Anatomic Landmarks Software Internet

Classifications MeSH