Noises investigations and image denoising in femtosecond stimulated Raman scattering microscopy.
Raman microscopy
microscopy
optics
relative intensity noise
stimulated Raman scattering microscopy
Journal
Journal of biophotonics
ISSN: 1864-0648
Titre abrégé: J Biophotonics
Pays: Germany
ID NLM: 101318567
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
revised:
12
03
2022
received:
11
12
2021
accepted:
21
03
2022
pubmed:
25
3
2022
medline:
7
6
2022
entrez:
24
3
2022
Statut:
ppublish
Résumé
In the literature of SRS microscopy, the hardware characterization usually remains separate from the image processing. In this article, we consider both these aspects and statistical properties analysis of image noise, which plays the vital role of joining links between them. Firstly, we perform hardware characterization by systematic measurements of noise sources, demonstrating that our in-house built microscope is shot noise limited. Secondly, we analyze the statistical properties of the overall image noise, and we prove that the noise distribution can be dependent on image direction, whose origin is the use of a lock-in time constant longer than pixel dwell time. Finally, we compare the performances of two widespread general algorithms, that is, singular value decomposition and discrete wavelet transform, with a method, that is, singular spectrum analysis (SSA), which has been adapted for stimulated Raman scattering images. In order to validate our algorithms, in our investigations lipids droplets have been used and we demonstrate that the adapted SSA method provides an improvement in image denoising.
Identifiants
pubmed: 35324074
doi: 10.1002/jbio.202100379
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202100379Informations de copyright
© 2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.
Références
O. Svelto, D. C. Hanna, Principles of Lasers, Springer, New York, NY 2010.
S. Donati, Photodetectors: Devices, Circuits and Applications, 2nd ed., Wiley-IEEE Press, Hoboken, NJ 2000.
M. Flower (Ed.), Webb's Physics of Medical Imaging, 2nd ed., CRC Press, Boca Raton 2012. https://doi.org/10.1201/b12218.
R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd ed., Prentice-Hall, Inc, Upper Saddle River, NJ 2002.
M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis and Machine Vision, 4th ed., Cengage Learning, Boston, MA 2015.
B. Z. Haq, J. B. Chowdhry, Eur. Biophys. J. 1997, 26, 419.
S. K. Mohideen, S. A. Perumal, M. M. Sathik, Int. J. Netw. Secur. 2008, 8, 213.
P. Pradhan, S. Guo, O. Ryabchykov, J. Popp, T. Bocklitz, J. Biophotonics 2020, 13, e201960186.
Y. R. Shen, N. Bloembergen, Phys. Rev. 1965, 137, A1787.
N. Bloembergen, Am. J. Phys. 1967, 35, 989.
J. X. Cheng, X. S. Xie (Eds), Coherent Raman Scattering Microscopy, CRC Press, Boca Raton 2012. https://doi.org/10.1201/b12907.
R. C. Prince, R. R. Frontiera, E. O. Potma, Chem. Rev. 2017, 117(7), 5070. https://doi.org/10.1021/acs.chemrev.6b00545.
L. Sirleto, M. A. Ferrara, T. Nikitin, S. Novikov, L. Khriachtchev, Nat. Commun. 2012, 3, 1. https://doi.org/10.1038/ncomms2188.
L. Sirleto, A. Vergara, M. A. Ferrara, Adv. Opt. Photon. 2017, 9, 169.
M. A. Ferrara, L. Sirleto, G. Nicotra, C. Spinella, I. Rendina, Photonics Nanostruct.: Fundam. Appl. 2011, 9, 1.
L. Sirleto, A. Aronne, M. Gioffrè, E. Fanelli, G. C. Righini, P. Pernice, A. Vergara, Opt. Mater. 2013, 36, 408. https://doi.org/10.1016/j.optmat.2013.10.001.
A. M. Streets, A. Li, T. Chen, Y. Huang, Anal. Chem. 2014, 86, 8506. https://doi.org/10.1021/ac5013706.
J. X. Cheng, X. S. Xie, Science 2015, 350(6264), aaa8870. https://doi.org/10.1126/science.aaa8870.
C. H. Camp Jr., M. T. Cicerone, Nat. Photonics 2015, 9(5), 295. https://doi.org/10.1038/nphoton.2015.60.
C. Zhang, D. Zhang, J.-X. Cheng, Annu. Rev. Biomed. Eng. 2015, 17, 415.
A. Owyoung, Opt. Lett. 1978, 2(4), 91.
J. P. Heritage, D. L. Allara, Chem. Phys. Lett. 1980, 74(3), 507.
B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum. Electron. 1979, QE-15, 1418.
A. Owyoung, IEEE J. Quantum. Electron. 1978, QE-14, 192.
D. Dietze, R. Mathies, ChemPhysChem 2016, 17, 1224.
G. Batignani, C. Ferrante, T. Scopigno, J. Phys. Chem. Lett. 2020, 11, 7805.
Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, K. Itoh, Opt. Express 2009, 17, 3651.
Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. S. Kajiyama, K. Fukui, K. Itoh, Opt. Express 2010, 18, 13708.
X. Audier, S. Heuke, P. Volz, I. Rimke, H. Rigneault, APL Photonics 2020, 5, 011101. https://doi.org/10.1063/1.5129212.
M. J. B. Moester, F. Ariese, J. F. de Boer, J. Eur. Opt. Soc.: Rapid Publ. 2015, 10, 15022.
K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, K. Itoh, Opt. Express 2012, 20(13), 13958. https://doi.org/10.1364/OE.20.013958.
L. Zada, B. Fokker, H. A. Leslie, A. D. Vethaak, J. F. de Boer, F. Ariese, J. Eur. Opt. Soc.: Rapid Publ. 2021, 17, 10. https://doi.org/10.1186/s41476-021-00155-w.
C. S. Liao, J. H. Choi, D. Zhang, S. H. Chan, J. X. Cheng, J. Phys. Chem. C 2015, 119, 19397.
Y. Li, B. Shen, G. Zou, S. Wang, Q. Junle, R. Hu, L. Liu, J. Biophotonics 2021, 14(8), e202100080. https://doi.org/10.1002/jbio.202100080.
B. Manifold, E. Thomas, A. T. Francis, A. H. Hill, F. Dan, Biomed. Opt. Express 2019, 10(8), 3860. https://doi.org/10.1364/BOE.10.003860.
P. Abdolghader, A. Ridsdale, T. Grammatikopoulos, G. Resch, F. Légaré, A. Stolow, A. F. Pegoraro, I. Tamblyn, Opt. Express 2021, 29(21), 34205. https://doi.org/10.1364/OE.439662.
H. Lin, H. J. Lee, N. Tague, J. B. Lugagne, C. Zong, F. Deng, J. Shin, L. Tian, W. Wong, M. J. Dunlop, J. X. Cheng, Nat. Commun. 2021, 12, 3052. https://doi.org/10.1038/s41467-021-23202-z.
N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure: SSA and Related Techniques, Chapman & Hall, New York, NY 2001.
A. M. Tomé, D. Malafaia, A. R. Teixeira, E. W. Lang, On the use of singular spectrum analysis. arXiv:1807.10679 2018, 1.
A. D'Arco, N. Brancati, M. A. Ferrara, M. Indolfi, M. Frucci, L. Sirleto, Opt. Express 2016, 7(5), 1853. https://doi.org/10.1364/BOE.7.001853.
A. D'Arco, M. A. Ferrara, M. Indolfi, V. Tufano, L. Sirleto, J. Nonlinear Opt. Phys. Mater. 2017, 26(4), 1750052. https://doi.org/10.1142/S0218863517500527.
R. Ranjan, A. D'Arco, M. A. Ferrara, M. Indolfi, M. Larobina, L. Sirleto, Opt. Exp. 2018, 26(20), 26317.
R. Ranjan, M. Indolfi, M. A. Ferrara, L. Sirleto, J. Vis. Exp. 2019, (149), e59614. https://doi.org/10.3791/59614.
M. A. Ferrara, A. Filograna, R. Ranjan, D. Corda, C. Valente, L. Sirleto, PLoS ONE 2019, 14(5), e0216811. https://doi.org/10.1371/journal.pone.0216811.
R. Ranjan, M. A. Ferrara, A. Filograna, C. Valente, L. Sirleto, J. Instrum. 2019, 14, P09008. https://doi.org/10.1088/1748-0221/14/09/P09008.
L. Sirleto, R. Ranjan, M. A. Ferrara, Appl. Sci. 2021, 11, 3903. https://doi.org/10.3390/app11093903.
J. Kim, Y. Song, Adv. Opt. Photonics 2016, 8(3), 465. https://doi.org/10.1364/AOP.8.000465.
D. von der Linde, Appl. Phys. B 1986, 39, 201.
G. E. P. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, CA 1970.
G. M. Ljung, G. E. P. Box, Biometrika 1978, 65(2), 297.
F. W. Scholz, M. A. Stephens, K-sample Anderson-Darling tests of fit, for continuous and discrete cases, Technical Report, No. 81, May 1986, Department of Statistics GN-22, University of Washington, Seattle, WA 1927.
Lock-in Amplifier Model SR844 RF Stanford Research Systems. User's Manual
Q. Wu, F. A. Merchant, K. R. Castleman, (Eds,). Microscope Image Processing, Elsevier-Academic Press, Cambridge, MA 2008. https://doi.org/10.1016/B978-0-12-372578-3.00001-5.