Temperature dependence of emission product distribution from vaping of vitamin E acetate.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
12
10
2021
accepted:
26
02
2022
entrez:
24
3
2022
pubmed:
25
3
2022
medline:
4
5
2022
Statut:
epublish
Résumé
Nearly two years after vitamin E acetate (VEA) was identified as the potential cause of the 2019-2020 outbreak of e-cigarette, or vaping product-associated lung injuries (EVALI), the toxicity mechanisms of VEA vaping are still yet to be fully understood. Studies since the outbreak have found that e-liquids such as VEA undergo thermal degradation during the vaping process to produce various degradation products, which may pose a greater risk of toxicity than exposure to unvaped VEA. Additionally, a wide range of customizable parameters-including the model of e-cigarette used, puffing topography, or the applied power/temperature used to generate aerosols-have been found to influence the physical properties and chemical compositions of vaping emissions. However, the impact of heating coil temperature on the chemical composition of VEA vaping emissions has not been fully assessed. In this study, we investigated the emission product distribution of VEA vaping emissions produced at temperatures ranging from 176 to 356°C, corresponding to a variable voltage vape pen set at 3.3 to 4.8V. VEA degradation was found to be greatly enhanced with increasing temperature, resulting in a shift towards the production of lower molecular weight compounds, such as the redox active duroquinone (DQ) and short-chain alkenes. Low temperature vaping of VEA resulted in the production of long-chain molecules, such as phytol, exposure to which has been suggested to induce lung damage in previous studies. Furthermore, differential product distribution was observed in VEA degradation products generated from vaping and from pyrolysis using a tube furnace in the absence of the heating coil at equivalent temperatures, suggesting the presence of external factors such as metals or oxidation that may enhance VEA degradation during vaping. Overall, our findings indicate that vaping behavior may significantly impact the risk of exposure to toxic vaping products and potential for vaping-related health concerns.
Identifiants
pubmed: 35324938
doi: 10.1371/journal.pone.0265365
pii: PONE-D-21-32779
pmc: PMC8947410
doi:
Substances chimiques
Acetates
0
Vitamin E
1406-18-4
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0265365Subventions
Organisme : NIEHS NIH HHS
ID : T32 ES018827
Pays : United States
Organisme : NIGMS NIH HHS
ID : T34 GM062756
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Chem Res Toxicol. 2021 Jun 21;34(6):1640-1654
pubmed: 33949191
Toxics. 2020 Jan 24;8(1):
pubmed: 31991538
Mol Cell Biochem. 1992 Apr;111(1-2):109-15
pubmed: 1588932
J Expo Sci Environ Epidemiol. 2021 Nov;31(6):1008-1016
pubmed: 34239037
N Engl J Med. 2020 Feb 20;382(8):697-705
pubmed: 31860793
Nicotine Tob Res. 2015 Feb;17(2):150-7
pubmed: 25187061
Aerosol Sci Technol. 2020;54(9):993-998
pubmed: 33132476
Environ Sci Process Impacts. 2019 May 1;21(5):856-866
pubmed: 30942229
PLoS One. 2020 Sep 3;15(9):e0238140
pubmed: 32881943
PLoS One. 2020 Oct 19;15(10):e0240613
pubmed: 33075091
Environ Sci Technol. 2016 Sep 6;50(17):9644-51
pubmed: 27461870
Plant Cell. 2015 Oct;27(10):2846-59
pubmed: 26452599
PLoS One. 2013;8(3):e57987
pubmed: 23526962
Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-D1395
pubmed: 33151290
Chem Res Toxicol. 2019 Jun 17;32(6):1087-1095
pubmed: 30977360
Nutrition. 2001 Oct;17(10):839-44
pubmed: 11684391
J Anal Appl Pyrolysis. 2018 Sep;134:520-525
pubmed: 30906089
Sci Rep. 2021 Apr 8;11(1):7800
pubmed: 33833273
Int J Hyg Environ Health. 2016 May;219(3):268-77
pubmed: 26847410
Pharmacol Ther. 2021 Sep;225:107837
pubmed: 33753133
PLoS One. 2018 Nov 5;13(11):e0206937
pubmed: 30395592
Toxics. 2021 Sep 29;9(10):
pubmed: 34678936
Inhal Toxicol. 2021 Jan;33(1):33-40
pubmed: 33441006
Chem Res Toxicol. 2020 Aug 17;33(8):2157-2163
pubmed: 32618192
JAMA Netw Open. 2020 Dec 1;3(12):e2030189
pubmed: 33351085
Annu Rev Pharmacol Toxicol. 1999;39:127-50
pubmed: 10331079
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6349-6355
pubmed: 32156732
Br J Pharmacol. 2011 Aug;163(7):1344-64
pubmed: 21749363
J Cheminform. 2020 Oct 20;12(1):63
pubmed: 33372633
PLoS One. 2015 Feb 09;10(2):e0117222
pubmed: 25664463
Sci Rep. 2019 Sep 27;9(1):13969
pubmed: 31562360
Anal Chem. 2012 Sep 4;84(17):7274-82
pubmed: 22803687
Toxics. 2021 Dec 09;9(12):
pubmed: 34941780
PLoS One. 2018 Apr 19;13(4):e0195925
pubmed: 29672571
J Am Soc Mass Spectrom. 1995 Aug;6(8):644-55
pubmed: 24214391
Physiol Rep. 2019 May;7(10):e14093
pubmed: 31140749
PLoS One. 2021 Mar 9;16(3):e0248127
pubmed: 33690644
Front Chem. 2021 Aug 09;9:734793
pubmed: 34434923
Sci Rep. 2016 Oct 10;6:35071
pubmed: 27721496
Chem Res Toxicol. 2022 Feb 21;35(2):254-264
pubmed: 35077135
Front Public Health. 2022 Jan 21;9:765168
pubmed: 35127617
Angew Chem Int Ed Engl. 2013 Jun 10;52(24):6306-12
pubmed: 23630109