Detection of copy number variants and genes by chromosomal microarray in an Emirati neurodevelopmental disorders cohort.


Journal

Neurogenetics
ISSN: 1364-6753
Titre abrégé: Neurogenetics
Pays: United States
ID NLM: 9709714

Informations de publication

Date de publication:
04 2022
Historique:
received: 06 12 2021
accepted: 06 03 2022
pubmed: 25 3 2022
medline: 29 4 2022
entrez: 24 3 2022
Statut: ppublish

Résumé

Copy number variations (CNVs) are highly implicated in the etiology of neurodevelopmental disorders (NDDs), and chromosomal microarray analysis (CMA) has been recommended as a first-tier test for many NDDs. We undertook a study to identify clinically relevant CNVs and genes in an ethnically homogenous population of the United Arab Emirates. We genotyped 98 patients with NDDs using genome-wide chromosomal microarray analysis, and observed 47.1% deletion and 52.9% duplication CNVs, of which 11.8% are pathogenic, 23.5% are likely pathogenic, and 64.7% VOUS. The average size of copy number losses (3.9 Mb) was generally higher than of gains (738.4 kb). Analysis of VOUS CNVs for constrained genes (enrichment for brain critical exons and high pLI genes) yielded 7 unique genes. Among these 7 constrained genes, we propose FNTA and PXK as potential candidate genes for neurodevelopmental disorders, which warrants further investigation. Thirty-two overlapping CNVs (Decipher and ClinVar) containing the FNTA gene were previously identified in NDD patients and 6 overlapping CNVs (Decipher and ClinVar) containing the PXK gene were previously identified in NDD patients. Our study supports the utility of CMA for CNV profiling which aids in precise genetic diagnosis and its integration into therapeutics and management of NDD patients.

Identifiants

pubmed: 35325322
doi: 10.1007/s10048-022-00689-2
pii: 10.1007/s10048-022-00689-2
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

137-149

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Hansen BH, Oerbeck B, Skirbekk B, Petrovski BE, Kristensen H (2018) Neurodevelopmental disorders: prevalence and comorbidity in children referred to mental health services. Nord J Psychiatry 72(4):285–291. https://doi.org/10.1080/08039488.2018.1444087
doi: 10.1080/08039488.2018.1444087 pubmed: 29488416
Parenti I, Rabaneda LG, Schoen H, Novarino G (2020) Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci 43(8):608–621. https://doi.org/10.1016/j.tins.2020.05.004
doi: 10.1016/j.tins.2020.05.004 pubmed: 32507511
Gilissen C et al (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature 511(7509):344–347. https://doi.org/10.1038/nature13394
doi: 10.1038/nature13394 pubmed: 24896178
First MB (2013) Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. J Nerv Ment Dis 201(9):727–9. https://doi.org/10.1097/NMD.0b013e3182a2168a
doi: 10.1097/NMD.0b013e3182a2168a pubmed: 23995026
M. Woodbury-Smith et al. (2017) Variable phenotype expression in a family segregating microdeletions of the NRXN1 and MBD5 autism spectrum disorder susceptibility genes. NPJ Genom Med. 2. https://doi.org/10.1038/s41525-017-0020-9
Woodbury-Smith M et al (2017) Mutations in RAB39B in individuals with intellectual disability, autism spectrum disorder, and macrocephaly. Mol Autism 8:59. https://doi.org/10.1186/s13229-017-0175-3
doi: 10.1186/s13229-017-0175-3 pubmed: 29152164 pmcid: 5679329
M. Woodbury-Smith et al (2022) Mutational landscape of autism spectrum disorder brain tissue. Genes. 13 (2);207 [Online]. Available: https://www.mdpi.com/2073-4425/13/2/207
Girirajan S, Campbell CD, Eichler EE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45:203–226. https://doi.org/10.1146/annurev-genet-102209-163544
doi: 10.1146/annurev-genet-102209-163544 pubmed: 21854229 pmcid: 6662611
Jang W et al (2019) Chromosomal microarray analysis as a first-tier clinical diagnostic test in patients with developmental delay/intellectual disability, autism spectrum disorders, and multiple congenital anomalies: a prospective multicenter study in Korea. Ann Lab Med 39(3):299–310. https://doi.org/10.3343/alm.2019.39.3.299
doi: 10.3343/alm.2019.39.3.299 pubmed: 30623622 pmcid: 6340852
Tammimies K et al (2015) Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA 314(9):895–903. https://doi.org/10.1001/jama.2015.10078
doi: 10.1001/jama.2015.10078 pubmed: 26325558
al-Gazali LI, Bener A, Abdulrazzaq YM, Micallef R, al-Khayat AI, Gaber T (1997) Consanguineous marriages in the United Arab Emirates. J Biosoc Sci. 29(4):491–7. https://doi.org/10.1017/s0021932097004914
doi: 10.1017/s0021932097004914 pubmed: 9881148
Akter H et al (2021) Whole exome sequencing uncovered highly penetrant recessive mutations for a spectrum of rare genetic pediatric diseases in Bangladesh. NPJ Genom Med. 6(1):14. https://doi.org/10.1038/s41525-021-00173-0
doi: 10.1038/s41525-021-00173-0 pubmed: 33594065 pmcid: 7887195
Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30
doi: 10.1038/gim.2015.30 pubmed: 25741868 pmcid: 25741868
Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102
doi: 10.1073/pnas.0506580102 pubmed: 1239896 pmcid: 1239896
Uddin M et al (2014) Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nat Genet 46(7):742–747. https://doi.org/10.1038/ng.2980
doi: 10.1038/ng.2980 pubmed: 24859339
Lek M et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291. https://doi.org/10.1038/nature19057
doi: 10.1038/nature19057 pubmed: 27535533 pmcid: 5018207
Sunkin SM et al (2013) Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 41(Database issue):D996–D1008. https://doi.org/10.1093/nar/gks1042
doi: 10.1093/nar/gks1042 pubmed: 23193282
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226
doi: 10.1038/nmeth.1226 pubmed: 18516045
Nassir N et al (2021) Single-cell transcriptome identifies molecular subtype of autism spectrum disorder impacted by de novo loss-of-function variants regulating glial cells. Hum Genomics 15(1):68. https://doi.org/10.1186/s40246-021-00368-7
doi: 10.1186/s40246-021-00368-7 pubmed: 34802461 pmcid: 8607722
Cao J et al (2020) A human cell atlas of fetal gene expression. Science. 370 (6518). https://doi.org/10.1126/science.aba7721
Szklarczyk D et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447-52. https://doi.org/10.1093/nar/gku1003
doi: 10.1093/nar/gku1003 pubmed: 25352553
Pinner AL, Mueller TM, Alganem K, McCullumsmith R, Meador-Woodruff JH (2020) Protein expression of prenyltransferase subunits in postmortem schizophrenia dorsolateral prefrontal cortex. Transl Psychiatry 10(1):3. https://doi.org/10.1038/s41398-019-0610-7
doi: 10.1038/s41398-019-0610-7 pubmed: 32066669 pmcid: 7026430
Ruderfer DM et al (2016) Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat Genet 48(10):1107–1111. https://doi.org/10.1038/ng.3638
doi: 10.1038/ng.3638 pubmed: 27533299 pmcid: 5042837
Jones KL et al (2017) Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry 22(2):273–279. https://doi.org/10.1038/mp.2016.77
doi: 10.1038/mp.2016.77 pubmed: 27217154
Szczaluba K et al (2018) Neurodevelopmental phenotype caused by a de novo PTPN4 single nucleotide variant disrupting protein localization in neuronal dendritic spines. Clin Genet 94(6):581–585. https://doi.org/10.1111/cge.13450
doi: 10.1111/cge.13450 pubmed: 30238967
Bitetto G, Di Fonzo A (2020) Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 9(1):25. https://doi.org/10.1186/s40035-020-00205-2
doi: 10.1186/s40035-020-00205-2 pubmed: 32616075 pmcid: 7333321
Nguyen JM, Qualmann KJ, Okashah R, Reilly A, Alexeyev MF, Campbell DJ (2015) 5p deletions: current knowledge and future directions. Am J Med Genet C Semin Med Genet 169(3):224–238. https://doi.org/10.1002/ajmg.c.31444
doi: 10.1002/ajmg.c.31444 pubmed: 26235846 pmcid: 4736720
Phelan MC (2008) Deletion 22q13.3 syndrome. Orphanet J Rare Dis 3:14. https://doi.org/10.1186/1750-1172-3-14
doi: 10.1186/1750-1172-3-14 pubmed: 18505557 pmcid: 2427010
Phelan K, McDermid HE (2012) The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol 2(3–5):186–201. https://doi.org/10.1159/000334260
doi: 10.1159/000334260 pubmed: 22670140 pmcid: 22670140
Bacchelli E et al (2015) Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility. Am J Med Genet A 167A(4):715–723. https://doi.org/10.1002/ajmg.a.36847
doi: 10.1002/ajmg.a.36847 pubmed: 25655306
Uhlen M et al (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28(12):1248–1250. https://doi.org/10.1038/nbt1210-1248
doi: 10.1038/nbt1210-1248 pubmed: 21139605
Li H et al (2016) Protein prenylation constitutes an endogenous brake on axonal growth. Cell Rep 16(2):545–558. https://doi.org/10.1016/j.celrep.2016.06.013
doi: 10.1016/j.celrep.2016.06.013 pubmed: 27373155
Lin Z, Li J, Ji T, Wu Y, Gao K, Jiang Y (2021) ATP1A1 de novo mutation-related disorders: clinical and genetic features. Front Pediatr 9:657256. https://doi.org/10.3389/fped.2021.657256
doi: 10.3389/fped.2021.657256 pubmed: 33968856 pmcid: 8098805
Guillen Sacoto MJ et al (2020) De novo variants in the ATPase module of MORC2 cause a neurodevelopmental disorder with growth retardation and variable craniofacial dysmorphism. Am J Hum Genet 107(2):352–363. https://doi.org/10.1016/j.ajhg.2020.06.013
doi: 10.1016/j.ajhg.2020.06.013 pubmed: 32693025 pmcid: 7413887

Auteurs

Nasna Nassir (N)

College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.

Isra Sati (I)

Mental Health Center of Excellence, Al Jalila Children's Hospital, Dubai, United Arab Emirates.
Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.

Shaiban Al Shaibani (S)

College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.

Awab Ahmed (A)

College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.

Omar Almidani (O)

Nuffield Department of Surgical Science, University of Oxford, Oxford, UK.

Hosneara Akter (H)

Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh.

Marc Woodbury-Smith (M)

Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK.

Ahmad Abou Tayoun (AA)

College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
Al Jalila Genomics Center, Al Jalila Children's Hospital, Dubai, United Arab Emirates.

Mohammed Uddin (M)

College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates. mohammed.uddin@mbru.ac.ae.
Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada. mohammed.uddin@mbru.ac.ae.

Ammar Albanna (A)

College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates. AAlBanna@ajch.ae.
Mental Health Center of Excellence, Al Jalila Children's Hospital, Dubai, United Arab Emirates. AAlBanna@ajch.ae.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH