Computational Modelling of Tone Perception Based on Direct Processing of
Mandarin tones
speech perception
tone features
tone recognition
Journal
Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646
Informations de publication
Date de publication:
02 Mar 2022
02 Mar 2022
Historique:
received:
29
01
2022
revised:
26
02
2022
accepted:
01
03
2022
entrez:
25
3
2022
pubmed:
26
3
2022
medline:
26
3
2022
Statut:
epublish
Résumé
It has been widely assumed that in speech perception it is imperative to first detect a set of distinctive properties or features and then use them to recognize phonetic units like consonants, vowels, and tones. Those features can be auditory cues or articulatory gestures, or a combination of both. There have been no clear demonstrations of how exactly such a two-phase process would work in the perception of continuous speech, however. Here we used computational modelling to explore whether it is possible to recognize phonetic categories from syllable-sized continuous acoustic signals of connected speech without intermediate featural representations. We used Support Vector Machine (SVM) and Self-organizing Map (SOM) to simulate tone perception in Mandarin, by either directly processing
Identifiants
pubmed: 35326294
pii: brainsci12030337
doi: 10.3390/brainsci12030337
pmc: PMC8946547
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Lang Speech. 1986 Jan-Mar;29 ( Pt 1):3-11
pubmed: 3657346
Nat Rev Neurosci. 2010 May;11(5):351-60
pubmed: 20383203
Cognition. 1985 Oct;21(1):1-36
pubmed: 4075760
Front Psychol. 2019 Nov 22;10:2469
pubmed: 31824364
Psychol Rev. 1967 Nov;74(6):431-61
pubmed: 4170865
Neuropsychologia. 2003;41(8):989-94
pubmed: 12667534
Lang Speech. 2007;50(Pt 3):343-83
pubmed: 17974323
Percept Psychophys. 1998 May;60(4):602-19
pubmed: 9628993
Science. 1975 Oct 3;190(4209):69-72
pubmed: 1166301
J Acoust Soc Am. 1978 Nov;64(5):1358-68
pubmed: 744836
Psychon Bull Rev. 2006 Jun;13(3):361-77
pubmed: 17048719
Curr Biol. 2009 Mar 10;19(5):381-5
pubmed: 19217297
Science. 1971 Jan 22;171(3968):303-6
pubmed: 5538846
Trends Cogn Sci. 2007 Mar;11(3):105-10
pubmed: 17254833
Q J Exp Psychol (Hove). 2008 Jun;61(6):825-50
pubmed: 18470815
J Acoust Soc Am. 2020 Apr;147(4):2570
pubmed: 32359306
J Acoust Soc Am. 2002 Apr;111(4):1872-91
pubmed: 12002871
J Phon. 2017 Jul;63:75-86
pubmed: 29104329
Cognition. 2007 Apr;103(1):80-106
pubmed: 16650399
Brain Lang. 2008 Dec;107(3):179-84
pubmed: 18976806
Trends Cogn Sci. 2009 Mar;13(3):110-4
pubmed: 19223222
J Acoust Soc Am. 2021 Apr;149(4):2877
pubmed: 33940879
Neuropsychologia. 2019 May;128:290-296
pubmed: 29317325
Proc IEEE Int Conf Acoust Speech Signal Process. 2005;1(1415088):1213-1216
pubmed: 19212454
Cereb Cortex. 2015 Feb;25(2):281-8
pubmed: 24046079
Curr Biol. 2007 Oct 9;17(19):1692-6
pubmed: 17900904
Annu Rev Psychol. 2004;55:149-79
pubmed: 14744213
Lang Speech. 1992 Jan-Jun;35 ( Pt 1-2):99-113
pubmed: 1287395
Eur J Neurosci. 2002 Jan;15(2):399-402
pubmed: 11849307
J Acoust Soc Am. 2013 Sep;134(3):2235-46
pubmed: 23967953
J Exp Psychol. 1957 Nov;54(5):358-68
pubmed: 13481283
Lang Speech. 1989 Jan-Mar;32 ( Pt 1):25-44
pubmed: 2533648
Lang Speech. 1978 Oct-Dec;21(4):319-25
pubmed: 750791
Brain Lang. 2009 Oct;111(1):1-7
pubmed: 19362734
J Acoust Soc Am. 2009 Jan;125(1):405-24
pubmed: 19173427
N Engl J Med. 1992 Feb 20;326(8):531-9
pubmed: 1732792
J Acoust Soc Am. 1966 Jan;39(1):151-68
pubmed: 5904529
Nat Rev Neurosci. 2007 May;8(5):393-402
pubmed: 17431404