Determination of Mycotoxins in Dried Fruits Using LC-MS/MS-A Sample Homogeneity, Troubleshooting and Confirmation of Identity Study.
LC-MS
dried fruits
mycotoxins
Journal
Foods (Basel, Switzerland)
ISSN: 2304-8158
Titre abrégé: Foods
Pays: Switzerland
ID NLM: 101670569
Informations de publication
Date de publication:
21 Mar 2022
21 Mar 2022
Historique:
received:
18
02
2022
revised:
11
03
2022
accepted:
17
03
2022
entrez:
25
3
2022
pubmed:
26
3
2022
medline:
26
3
2022
Statut:
epublish
Résumé
To monitor co-exposure to toxic mycotoxins in dried fruits, it is advantageous to simultaneously determine multiple mycotoxins using a single extraction and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. In this study, we applied a stable isotope dilution and LC-MS/MS method to multi-mycotoxin analysis in dried fruits, selecting raisins, plums, figs, and cranberries for matrix extension. Samples were prepared using cryogenic grinding, followed by the fortification of carbon-13 (13C) uniformly labeled internal standards for twelve mycotoxins, and extraction using 50% acetonitrile. Homogeneity of prepared samples, defined as particle size Dv90 < 850 µm for the tested matrices, was characterized using a laser diffraction particle size analyzer, and reached using cryogenic grinding procedures. The majority of recoveries in the four matrices for aflatoxins and ochratoxin A spiked at 1−100 ng/g; fumonisins, T-2 toxin, HT-2 toxin, and zearalenone spiked at 10−1000 ng/g, ranged from 80 to 120% with relative standard deviations (RSDs) of <20%. Deoxynivalenol was not detected at 10 and 100 ng/g in plums, and additional troubleshooting procedures using liquid-liquid extraction (LLE), solid phase extraction (SPE), and elution gradient were evaluated to improve the detectability of the mycotoxin. Furthermore, we confirmed the identity of detected mycotoxins, ochratoxin A and deoxynivalenol, in incurred samples using enhanced product ion scans and spectral library matching.
Identifiants
pubmed: 35327316
pii: foods11060894
doi: 10.3390/foods11060894
pmc: PMC8954288
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Talanta. 2013 Dec 15;117:345-51
pubmed: 24209351
Mass Spectrom Rev. 2006 Jan-Feb;25(1):54-76
pubmed: 15892148
Anal Bioanal Chem. 2010 Apr;396(7):2425-34
pubmed: 20127316
Anal Chem. 2009 Feb 1;81(3):898-912
pubmed: 19113952
Anal Bioanal Chem. 2008 Jan;390(2):617-28
pubmed: 18060393
Anal Chem. 2012 Jul 3;84(13):5677-84
pubmed: 22686274
J Agric Food Chem. 2013 Jul 3;61(26):6265-73
pubmed: 23746324
Nat Toxins. 1999;7(6):347-52
pubmed: 11122528
Nutr Res. 2011 Jun;31(6):460-7
pubmed: 21745628
Food Addit Contam. 2007 Oct;24(10):1184-95
pubmed: 17886191
J Food Prot. 2003 Aug;66(8):1514-27
pubmed: 12929850
Anal Bioanal Chem. 2020 Apr;412(11):2607-2620
pubmed: 32078002
Rapid Commun Mass Spectrom. 2009 Apr;23(8):1196-200
pubmed: 19288539
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009 Jun;26(6):885-95
pubmed: 19680964
Mass Spectrom Rev. 2011 May-Jun;30(3):491-509
pubmed: 21500246
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008 Feb;25(2):181-92
pubmed: 18286408
Mass Spectrom Rev. 2012 Jul-Aug;31(4):466-503
pubmed: 22065561
Mass Spectrom Rev. 2013 Nov-Dec;32(6):420-52
pubmed: 23804155
J Agric Food Chem. 2017 Aug 23;65(33):7138-7152
pubmed: 27983809